OV-MAP : Open-Vocabulary Zero-Shot 3D Instance Segmentation Map for Robots
- URL: http://arxiv.org/abs/2506.11585v1
- Date: Fri, 13 Jun 2025 08:49:23 GMT
- Title: OV-MAP : Open-Vocabulary Zero-Shot 3D Instance Segmentation Map for Robots
- Authors: Juno Kim, Yesol Park, Hye-Jung Yoon, Byoung-Tak Zhang,
- Abstract summary: OV-MAP is a novel approach to open-world 3D mapping for mobile robots by integrating open-features into 3D maps to enhance object recognition capabilities.<n>We employ a class-agnostic segmentation model to project 2D masks into 3D space, combined with a supplemented depth image created by merging raw and synthetic depth from point clouds.<n>This approach, along with a 3D mask voting mechanism, enables accurate zero-shot 3D instance segmentation without relying on 3D supervised segmentation models.
- Score: 18.200635521222267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce OV-MAP, a novel approach to open-world 3D mapping for mobile robots by integrating open-features into 3D maps to enhance object recognition capabilities. A significant challenge arises when overlapping features from adjacent voxels reduce instance-level precision, as features spill over voxel boundaries, blending neighboring regions together. Our method overcomes this by employing a class-agnostic segmentation model to project 2D masks into 3D space, combined with a supplemented depth image created by merging raw and synthetic depth from point clouds. This approach, along with a 3D mask voting mechanism, enables accurate zero-shot 3D instance segmentation without relying on 3D supervised segmentation models. We assess the effectiveness of our method through comprehensive experiments on public datasets such as ScanNet200 and Replica, demonstrating superior zero-shot performance, robustness, and adaptability across diverse environments. Additionally, we conducted real-world experiments to demonstrate our method's adaptability and robustness when applied to diverse real-world environments.
Related papers
- SAB3R: Semantic-Augmented Backbone in 3D Reconstruction [19.236494823612507]
We introduce a new task, Map and Locate, which unifies the objectives of open-vocabulary segmentation and 3D reconstruction.<n>Specifically, Map and Locate involves generating a point cloud from an unposed video and segmenting object instances based on open-vocabulary queries.<n>This task serves as a critical step toward real-world embodied AI applications and introduces a practical task that bridges reconstruction, recognition and reorganization.
arXiv Detail & Related papers (2025-06-02T18:00:04Z) - Easy3D: A Simple Yet Effective Method for 3D Interactive Segmentation [10.2138250640885]
We introduce a 3D interactive segmentation method that consistently surpasses previous state-of-the-art techniques on both in-domain and out-of-domain datasets.<n>Our simple approach integrates a voxel-based sparse encoder with a lightweight transformer-based decoder that implements implicit click fusion.<n>Our method demonstrates substantial improvements on benchmark datasets, including ScanNet, ScanNet++, S3DIS, and KITTI-360.
arXiv Detail & Related papers (2025-04-15T09:49:51Z) - GaussianAnything: Interactive Point Cloud Flow Matching For 3D Object Generation [75.39457097832113]
This paper introduces a novel 3D generation framework, offering scalable, high-quality 3D generation with an interactive Point Cloud-structured Latent space.<n>Our framework employs a Variational Autoencoder with multi-view posed RGB-D(epth)-N(ormal) renderings as input, using a unique latent space design that preserves 3D shape information.<n>The proposed method, GaussianAnything, supports multi-modal conditional 3D generation, allowing for point cloud, caption, and single image inputs.
arXiv Detail & Related papers (2024-11-12T18:59:32Z) - Object-Oriented Material Classification and 3D Clustering for Improved Semantic Perception and Mapping in Mobile Robots [6.395242048226456]
We propose a complement-aware deep learning approach for RGB-D-based material classification built on top of an object-oriented pipeline.
We show a significant improvement in material classification and 3D clustering accuracy compared to state-of-the-art approaches for 3D semantic scene mapping.
arXiv Detail & Related papers (2024-07-08T16:25:01Z) - Memorize What Matters: Emergent Scene Decomposition from Multitraverse [54.487589469432706]
We introduce 3D Gaussian Mapping, a camera-only offline mapping framework grounded in 3D Gaussian Splatting.
3DGM converts multitraverse RGB videos from the same region into a Gaussian-based environmental map while concurrently performing 2D ephemeral object segmentation.
We build the Mapverse benchmark, sourced from the Ithaca365 and nuPlan datasets, to evaluate our method in unsupervised 2D segmentation, 3D reconstruction, and neural rendering.
arXiv Detail & Related papers (2024-05-27T14:11:17Z) - ClusteringSDF: Self-Organized Neural Implicit Surfaces for 3D Decomposition [32.99080359375706]
ClusteringSDF is a novel approach to achieve both segmentation and reconstruction in 3D via the neural implicit surface representation.
We introduce a high-efficient clustering mechanism for lifting the 2D labels to 3D and the experimental results on the challenging scenes from ScanNet and Replica datasets show that ClusteringSDF can achieve competitive performance.
arXiv Detail & Related papers (2024-03-21T17:59:16Z) - Open3DIS: Open-Vocabulary 3D Instance Segmentation with 2D Mask Guidance [49.14140194332482]
We introduce Open3DIS, a novel solution designed to tackle the problem of Open-Vocabulary Instance within 3D scenes.
Objects within 3D environments exhibit diverse shapes, scales, and colors, making precise instance-level identification a challenging task.
arXiv Detail & Related papers (2023-12-17T10:07:03Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
Knowing the exact 3D location of workers and robots in a collaborative environment enables several real applications.
We propose a non-invasive framework based on depth devices and deep neural networks to estimate the 3D pose of robots from an external camera.
arXiv Detail & Related papers (2022-07-06T08:52:12Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.