Optimising complexity of CNN models for resource constrained devices:
QRS detection case study
- URL: http://arxiv.org/abs/2301.09232v1
- Date: Mon, 23 Jan 2023 00:22:37 GMT
- Title: Optimising complexity of CNN models for resource constrained devices:
QRS detection case study
- Authors: Ahsan Habib, Chandan Karmakar and John Yearwood
- Abstract summary: We propose a shallow CNN model to offer satisfactory level of performance in combination with post-processing.
In an IoMT application context, QRS-detection and R-peak localisation from ECG signal as a case study, the complexities of CNN models and post-processing were varied.
To the best of our knowledge, finding a deploy-able configuration, by incrementally increasing the CNN model complexity, and leveraging the strength of post-processing, is the first of its kind.
- Score: 1.6822770693792823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional DL models are complex and resource hungry and thus, care needs to
be taken in designing Internet of (medical) things (IoT, or IoMT) applications
balancing efficiency-complexity trade-off. Recent IoT solutions tend to avoid
using deep-learning methods due to such complexities, and rather classical
filter-based methods are commonly used. We hypothesize that a shallow CNN model
can offer satisfactory level of performance in combination by leveraging other
essential solution-components, such as post-processing that is suitable for
resource constrained environment. In an IoMT application context, QRS-detection
and R-peak localisation from ECG signal as a case study, the complexities of
CNN models and post-processing were varied to identify a set of combinations
suitable for a range of target resource-limited environments. To the best of
our knowledge, finding a deploy-able configuration, by incrementally increasing
the CNN model complexity, as required to match the target's resource capacity,
and leveraging the strength of post-processing, is the first of its kind. The
results show that a shallow 2-layer CNN with a suitable post-processing can
achieve $>$90\% F1-score, and the scores continue to improving for 8-32 layer
CNNs, which can be used to profile target constraint environment. The outcome
shows that it is possible to design an optimal DL solution with known target
performance characteristics and resource (computing capacity, and memory)
constraints.
Related papers
- Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - PLiNIO: A User-Friendly Library of Gradient-based Methods for
Complexity-aware DNN Optimization [3.460496851517031]
PLiNIO is an open-source library implementing a comprehensive set of state-of-the-art DNN design automation techniques.
We show that PLiNIO achieves up to 94.34% memory reduction for a 1% accuracy drop compared to a baseline architecture.
arXiv Detail & Related papers (2023-07-18T07:11:14Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
We propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs.
We define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs.
arXiv Detail & Related papers (2022-08-26T16:01:23Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Compact CNN Structure Learning by Knowledge Distillation [34.36242082055978]
We propose a framework that leverages knowledge distillation along with customizable block-wise optimization to learn a lightweight CNN structure.
Our method results in a state of the art network compression while being capable of achieving better inference accuracy.
In particular, for the already compact network MobileNet_v2, our method offers up to 2x and 5.2x better model compression.
arXiv Detail & Related papers (2021-04-19T10:34:22Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.