論文の概要: Practical Adversarial Attacks Against AI-Driven Power Allocation in a
Distributed MIMO Network
- arxiv url: http://arxiv.org/abs/2301.09305v1
- Date: Mon, 23 Jan 2023 07:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 14:01:34.218513
- Title: Practical Adversarial Attacks Against AI-Driven Power Allocation in a
Distributed MIMO Network
- Title(参考訳): 分散MIMOネットワークにおけるAI駆動型パワーアロケーションに対する現実的敵攻撃
- Authors: \"Omer Faruk Tuna, Fehmi Emre Kadan, Leyli Kara\c{c}ay
- Abstract要約: 分散マルチインプット多重出力(D-MIMO)ネットワークでは、ユーザのスペクトル効率を最適化するために電力制御が不可欠である。
深層ニューラルネットワークに基づく人工知能(AI)ソリューションが提案され、複雑性が低下する。
本研究では,悪意のあるユーザや無線ユニットから派生したターゲットAIモデルに対する脅威は,ネットワーク性能を著しく低下させる可能性があることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In distributed multiple-input multiple-output (D-MIMO) networks, power
control is crucial to optimize the spectral efficiencies of users and max-min
fairness (MMF) power control is a commonly used strategy as it satisfies
uniform quality-of-service to all users. The optimal solution of MMF power
control requires high complexity operations and hence deep neural network based
artificial intelligence (AI) solutions are proposed to decrease the complexity.
Although quite accurate models can be achieved by using AI, these models have
some intrinsic vulnerabilities against adversarial attacks where carefully
crafted perturbations are applied to the input of the AI model. In this work,
we show that threats against the target AI model which might be originated from
malicious users or radio units can substantially decrease the network
performance by applying a successful adversarial sample, even in the most
constrained circumstances. We also demonstrate that the risk associated with
these kinds of adversarial attacks is higher than the conventional attack
threats. Detailed simulations reveal the effectiveness of adversarial attacks
and the necessity of smart defense techniques.
- Abstract(参考訳): 分散マルチインプット・マルチアウトプット(D-MIMO)ネットワークにおいて、電力制御はユーザのスペクトル効率を最適化するために不可欠であり、最大ミンフェアネス(MMF)電力制御は全ユーザに対して均一な品質のサービスを実現するため、一般的に使用される戦略である。
mmf電力制御の最適解は高い複雑性操作を必要とするため、ディープニューラルネットワークに基づく人工知能(ai)ソリューションが提案されている。
AIを使用することで極めて正確なモデルを実現することができるが、これらのモデルには、AIモデルの入力に注意深く摂動を適用する敵攻撃に対する固有の脆弱性がある。
本研究では,悪意のあるユーザや無線ユニットが生み出すターゲットAIモデルに対する脅威が,最も制約のある状況であっても,良好な対向サンプルを適用することでネットワーク性能を著しく低下させることができることを示す。
また,これらの攻撃に伴うリスクは,従来の攻撃脅威よりも高いことを実証する。
詳細なシミュレーションは、敵攻撃の有効性とスマートディフェンス技術の必要性を明らかにする。
関連論文リスト
- Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
良く設計された敵防衛戦略は、敵の例に対するディープラーニングモデルの堅牢性を改善することができる。
防御モデルを考えると、計算負担が少なく、ロバストな精度の低い効率的な敵攻撃を更に活用する必要がある。
本稿では,防衛モデルに対する準最適攻撃の自動探索を実現する自動対向攻撃最適化設計のための多目的メメティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-15T03:03:05Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - Towards Efficiently Evaluating the Robustness of Deep Neural Networks in
IoT Systems: A GAN-based Method [12.466212057641933]
本稿では,AI-GAN(Attack-Inspired GAN)と呼ばれる新たなフレームワークを提案する。
広範な実験を通じて、AI-GANは攻撃の成功率が高く、既存の手法よりも優れ、生成時間を大幅に短縮する。
論文 参考訳(メタデータ) (2021-11-19T05:54:14Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - A Practical Adversarial Attack on Contingency Detection of Smart Energy
Systems [0.0]
本稿では,エネルギーシステムの動的制御を実質的に損なうことのできる,革新的な敵攻撃モデルを提案する。
また、深層強化学習(RL)技術を用いて、提案した敵攻撃モデルの展開を最適化する。
論文 参考訳(メタデータ) (2021-09-13T23:11:56Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Automated Adversary Emulation for Cyber-Physical Systems via
Reinforcement Learning [4.763175424744536]
我々は,サイバー物理システムに対する敵エミュレーションに対するドメイン認識の自動化手法を開発した。
我々は、マルコフ決定プロセス(MDP)モデルを定式化し、ハイブリッドアタックグラフ上で最適なアタックシーケンスを決定する。
モデルベースおよびモデルフリー強化学習(RL)法を用いて,離散連続型MDPをトラクタブルな方法で解く。
論文 参考訳(メタデータ) (2020-11-09T18:44:29Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。