論文の概要: Intelligent Attacks and Defense Methods in Federated Learning-enabled Energy-Efficient Wireless Networks
- arxiv url: http://arxiv.org/abs/2504.18519v1
- Date: Fri, 25 Apr 2025 17:40:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.860355
- Title: Intelligent Attacks and Defense Methods in Federated Learning-enabled Energy-Efficient Wireless Networks
- Title(参考訳): フェデレーション学習型省エネルギー無線ネットワークにおける知的攻撃と防御手法
- Authors: Han Zhang, Hao Zhou, Medhat Elsayed, Majid Bavand, Raimundas Gaigalas, Yigit Ozcan, Melike Erol-Kantarci,
- Abstract要約: フェデレートラーニング(FL)は、無線ネットワークにおける学習に基づく機能を実現するための有望な手法である。
FLは、ローカルモデルに対する攻撃が他のモデルに広がる可能性のある悪意のある攻撃にさらされるリスクを高める可能性がある。
悪意ある攻撃の効果を評価し,FL対応無線ネットワークの高度な防御技術を開発することが重要である。
- 参考スコア(独自算出の注目度): 16.816730878868373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a promising technique for learning-based functions in wireless networks, thanks to its distributed implementation capability. On the other hand, distributed learning may increase the risk of exposure to malicious attacks where attacks on a local model may spread to other models by parameter exchange. Meanwhile, such attacks can be hard to detect due to the dynamic wireless environment, especially considering local models can be heterogeneous with non-independent and identically distributed (non-IID) data. Therefore, it is critical to evaluate the effect of malicious attacks and develop advanced defense techniques for FL-enabled wireless networks. In this work, we introduce a federated deep reinforcement learning-based cell sleep control scenario that enhances the energy efficiency of the network. We propose multiple intelligent attacks targeting the learning-based approach and we propose defense methods to mitigate such attacks. In particular, we have designed two attack models, generative adversarial network (GAN)-enhanced model poisoning attack and regularization-based model poisoning attack. As a counteraction, we have proposed two defense schemes, autoencoder-based defense, and knowledge distillation (KD)-enabled defense. The autoencoder-based defense method leverages an autoencoder to identify the malicious participants and only aggregate the parameters of benign local models during the global aggregation, while KD-based defense protects the model from attacks by controlling the knowledge transferred between the global model and local models.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、分散実装機能のおかげで、無線ネットワークで学習に基づく関数を学習するための有望な技術である。
一方、分散学習は、ローカルモデルに対する攻撃がパラメータ交換によって他のモデルに拡散する悪意のある攻撃にさらされるリスクを増大させる可能性がある。
このような攻撃は、特にローカルモデルが非独立で同一に分散された(非IID)データと不均一であることを考えると、動的な無線環境のために検出することは困難である。
したがって、悪意ある攻撃の効果を評価し、FL対応無線ネットワークの高度な防御技術を開発することが重要である。
本研究では,ネットワークのエネルギー効率を高めるための深層学習に基づくセル睡眠制御シナリオを提案する。
学習に基づくアプローチをターゲットとした複数のインテリジェントアタックを提案し、そのようなアタックを緩和するための防御手法を提案する。
特に,GAN(Generative Adversarial Network)によるモデル中毒攻撃と,正規化に基づくモデル中毒攻撃の2つの攻撃モデルを設計した。
対策として,オートエンコーダを用いた防衛と知識蒸留(KD)対応防衛という2つの防衛手法を提案した。
オートエンコーダをベースとしたディフェンス方式では、悪意のある参加者を識別し、グローバルアグリゲーション中の良質なローカルモデルのパラメータのみを集約し、KDベースのディフェンスは、グローバルモデルとローカルモデルの間で伝達される知識を制御することにより、攻撃からモデルを保護する。
関連論文リスト
- Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning(FL)は、分散機械学習ダイアグラムで、複数のクライアントがプライベートなローカルデータを共有せずに、グローバルモデルを協調的にトレーニングすることができる。
FLシステムは、データ中毒やモデル中毒を通じて悪意のあるクライアントで起こっている攻撃に対して脆弱である。
既存の防御方法は通常、特定の種類の中毒を緩和することに焦点を当てており、しばしば目に見えないタイプの攻撃に対して効果がない。
論文 参考訳(メタデータ) (2024-08-05T20:27:45Z) - GANcrop: A Contrastive Defense Against Backdoor Attacks in Federated Learning [1.9632700283749582]
本稿では,GANcrop という,協調学習におけるバックドア攻撃に対する防御機構について紹介する。
実験的には、特に非IIDシナリオにおいて、ガンクロップはバックドア攻撃に対して効果的に保護されていることが示されている。
論文 参考訳(メタデータ) (2024-05-31T09:33:16Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Practical Defences Against Model Inversion Attacks for Split Neural
Networks [5.66430335973956]
本稿では,ネットワーク分割型フェデレーション学習システムが悪意のある計算サーバによるモデルインバージョン攻撃に影響を受けやすい脅威モデルについて述べる。
モデルインバージョンを防御するための簡易な付加雑音法を提案し,mnistの許容精度トレードオフにおいて攻撃効果を著しく低減できることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:12:17Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
ますます悪意のある攻撃者は、自動話者検証(ASV)システムで敵攻撃を仕掛けようとする。
本稿では,逐次的自己教師付き学習モデルに基づく標準的かつ攻撃非依存な手法を提案する。
実験により, 本手法は効果的な防御性能を実現し, 敵攻撃に対抗できることを示した。
論文 参考訳(メタデータ) (2021-02-14T01:56:43Z) - Robust Federated Learning with Attack-Adaptive Aggregation [45.60981228410952]
フェデレート学習は、モデル中毒やバックドア攻撃など、様々な攻撃に対して脆弱である。
本研究では,ロバスト学習のためのアタック・アダプティブ・アグリゲーション戦略を提案する。
論文 参考訳(メタデータ) (2021-02-10T04:23:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。