論文の概要: A Survey on Actionable Knowledge
- arxiv url: http://arxiv.org/abs/2301.09317v1
- Date: Mon, 23 Jan 2023 08:26:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:51:14.091436
- Title: A Survey on Actionable Knowledge
- Title(参考訳): 行動可能な知識に関する調査
- Authors: Sayed Erfan Arefin
- Abstract要約: 本研究の目的は,様々な分野に焦点をあてたさまざまな研究成果を検討することである。
本稿は,これらの研究で用いられている手法を詳細に検討し,議論する。
AKDは、データから実行可能な洞察を特定し、抽出するプロセスである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Actionable Knowledge Discovery (AKD) is a crucial aspect of data mining that
is gaining popularity and being applied in a wide range of domains. This is
because AKD can extract valuable insights and information, also known as
knowledge, from large datasets. The goal of this paper is to examine different
research studies that focus on various domains and have different objectives.
The paper will review and discuss the methods used in these studies in detail.
AKD is a process of identifying and extracting actionable insights from data,
which can be used to make informed decisions and improve business outcomes. It
is a powerful tool for uncovering patterns and trends in data that can be used
for various applications such as customer relationship management, marketing,
and fraud detection. The research studies reviewed in this paper will explore
different techniques and approaches for AKD in different domains, such as
healthcare, finance, and telecommunications. The paper will provide a thorough
analysis of the current state of AKD in the field and will review the main
methods used by various research studies. Additionally, the paper will evaluate
the advantages and disadvantages of each method and will discuss any novel or
new solutions presented in the field. Overall, this paper aims to provide a
comprehensive overview of the methods and techniques used in AKD and the impact
they have on different domains.
- Abstract(参考訳): Actionable Knowledge Discovery (AKD) は、データマイニングにおいて重要な側面であり、広く普及し、幅広い領域に適用されている。
これは、akdが大きなデータセットから貴重な洞察や情報(知識としても知られる)を抽出することができるためである。
本研究の目的は、様々な分野に焦点をあて、異なる目的を持つ様々な研究を調査することである。
本稿は,これらの研究で用いられている手法を詳細に検討し,議論する。
AKDはデータから実行可能な洞察を識別し抽出するプロセスであり、情報的意思決定やビジネス成果の改善に使用することができる。
顧客関係管理やマーケティング,不正検出など,さまざまなアプリケーションに使用可能な,データのパターンや傾向を明らかにするための強力なツールだ。
本稿では、医療、金融、電気通信など、さまざまな分野におけるAKDの様々な技術とアプローチについて検討する。
本稿は,この分野におけるakdの現状を徹底的に分析し,様々な研究で用いられる主な手法について概説する。
さらに,本論文では,各手法の利点とデメリットを評価し,その分野における新しい解や新しい解について論じる。
全体として、本論文はakdで使用される手法と技法の概要と異なるドメインへの影響について述べることを目的としている。
関連論文リスト
- A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
ソースフリードメイン適応(SFDA)の研究は近年注目を集めている。
SFDAの最近の進歩を包括的に調査し、それらを統一的な分類体系に整理する。
一般的な3つの分類基準で30以上のSFDA法を比較検討した。
論文 参考訳(メタデータ) (2023-02-23T06:32:09Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - Survey: Exploiting Data Redundancy for Optimization of Deep Learning [42.1585031880029]
深部ニューラルネットワーク(DNN)の入力と中間結果におけるデータの冗長性
この記事では、このトピックに関する最近の何百もの論文を調査します。
様々なテクニックを単一の分類の枠組みに組み込む新しい分類法を導入している。
論文 参考訳(メタデータ) (2022-08-29T04:31:18Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Domain Generalization: A Survey [146.68420112164577]
ドメイン一般化(DG)は、モデル学習にソースドメインデータを使用するだけでOOD一般化を実現することを目的としています。
初めて、DGの10年の開発をまとめるために包括的な文献レビューが提供されます。
論文 参考訳(メタデータ) (2021-03-03T16:12:22Z) - Distributed Deep Reinforcement Learning: An Overview [0.0]
本稿では,DRLにおける分散アプローチの役割について調査する。
本稿では,DRLにおける分散手法の活用方法に大きな影響を与える重要な研究成果について概説する。
また,これらの手法を異なるタスクで評価し,その性能を1人のアクターと学習者エージェントで比較する。
論文 参考訳(メタデータ) (2020-11-22T13:24:35Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
本稿では,DAKT問題に対処するための新しい適応型フレームワーク,すなわち知識追跡(AKT)を提案する。
まず,Deep Knowledge Trace(DKT)に基づく教育的特徴(スリップ,推測,質問文など)を取り入れ,優れた知識追跡モデルを得る。
第2の側面として、3つのドメイン適応プロセスを提案し、採用する。まず、ターゲットモデルトレーニングに有用なソースインスタンスを選択するために、自動エンコーダを事前訓練する。
論文 参考訳(メタデータ) (2020-01-14T15:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。