Deep Learning-Based Assessment of Cerebral Microbleeds in COVID-19
- URL: http://arxiv.org/abs/2301.09322v1
- Date: Mon, 23 Jan 2023 08:46:17 GMT
- Title: Deep Learning-Based Assessment of Cerebral Microbleeds in COVID-19
- Authors: Neus Rodeja Ferrer, Malini Vendela Sagar, Kiril Vadimovic Klein,
Christina Kruuse, Mads Nielsen, Mostafa Mehdipour Ghazi
- Abstract summary: Cerebral Microbleeds (CMBs) are captured as hypointensities from susceptibility-weighted imaging (SWI)
Recent studies on COVID-19 have shown an increase in CMBs of coronavirus cases.
Existing deep learning methods are mostly trained on very limited research data.
We propose an efficient 3D deep learning framework that is actively trained on multi-domain data.
- Score: 0.5382679710017695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cerebral Microbleeds (CMBs), typically captured as hypointensities from
susceptibility-weighted imaging (SWI), are particularly important for the study
of dementia, cerebrovascular disease, and normal aging. Recent studies on
COVID-19 have shown an increase in CMBs of coronavirus cases. Automatic
detection of CMBs is challenging due to the small size and amount of CMBs
making the classes highly imbalanced, lack of publicly available annotated
data, and similarity with CMB mimics such as calcifications, irons, and veins.
Hence, the existing deep learning methods are mostly trained on very limited
research data and fail to generalize to unseen data with high variability and
cannot be used in clinical setups. To this end, we propose an efficient 3D deep
learning framework that is actively trained on multi-domain data. Two public
datasets assigned for normal aging, stroke, and Alzheimer's disease analysis as
well as an in-house dataset for COVID-19 assessment are used to train and
evaluate the models. The obtained results show that the proposed method is
robust to low-resolution images and achieves 78% recall and 80% precision on
the entire test set with an average false positive of 1.6 per scan.
Related papers
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
Leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation.
Deep learning has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells.
In this research, hybrid deep learning models were implemented to classify Acute lymphoblastic leukemia (ALL)
The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset.
arXiv Detail & Related papers (2024-10-18T15:23:34Z) - MEDNC: Multi-ensemble deep neural network for COVID-19 diagnosis [29.909378035039214]
We propose the deep learning framework MEDNC for automatic prediction and diagnosis of COVID-19 using computed tomography (CT) images.
Our model was trained using two publicly available sets of COVID-19 data.
Results indicated that the MEDNC greatly enhanced the detection of COVID-19 infections, reaching an accuracy of 98.79% and 99.82% respectively.
arXiv Detail & Related papers (2023-04-25T20:26:05Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - A novel multiple instance learning framework for COVID-19 severity
assessment via data augmentation and self-supervised learning [64.90342559393275]
How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of people are suffering from the pandemic around the world.
We observe that there are two issues -- weak annotation and insufficient data that may obstruct automatic COVID-19 severity assessment with CT images.
Our method could obtain an average accuracy of 95.8%, with 93.6% sensitivity and 96.4% specificity, which outperformed previous works.
arXiv Detail & Related papers (2021-02-07T16:30:18Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - CoroNet: A deep neural network for detection and diagnosis of COVID-19
from chest x-ray images [0.0]
CoroNet is a Deep Conceptional Neural Network model to automatically detect COVID-19 infection from chest X-ray images.
The proposed model achieved an overall accuracy of 89.6% and the precision and recall rate for COVID-19 cases are 93% and 98.2%.
arXiv Detail & Related papers (2020-04-10T07:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.