A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT
- URL: http://arxiv.org/abs/2207.07117v1
- Date: Wed, 15 Jun 2022 18:35:22 GMT
- Title: A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT
- Authors: Justin Liu
- Abstract summary: The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a worldwide health crisis as exigent as COVID-19, there has become a
pressing need for rapid, reliable diagnostics. Currently, popular testing
methods such as reverse transcription polymerase chain reaction (RT-PCR) can
have high false negative rates. Consequently, COVID-19 patients are not
accurately identified nor treated quickly enough to prevent transmission of the
virus. However, the recent rise of medical CT data has presented promising
avenues, since CT manifestations contain key characteristics indicative of
COVID-19. This study aimed to take a novel approach in the machine
learning-based detection of COVID-19 from chest CT scans. First, the dataset
utilized in this study was derived from three major sources, comprising a total
of 17,698 chest CT slices across 923 patient cases. Image preprocessing
algorithms were then developed to reduce noise by excluding irrelevant
features. Transfer learning was also implemented with the EfficientNetB7
pre-trained model to provide a backbone architecture and save computational
resources. Lastly, several explainability techniques were leveraged to
qualitatively validate model performance by localizing infected regions and
highlighting fine-grained pixel details. The proposed model attained an overall
accuracy of 0.927 and a sensitivity of 0.958. Explainability measures showed
that the model correctly distinguished between relevant, critical features
pertaining to COVID-19 chest CT images and normal controls. Deep learning
frameworks provide efficient, human-interpretable COVID-19 diagnostics that
could complement radiologist decisions or serve as an alternative screening
tool. Future endeavors may provide insight into infection severity, patient
risk stratification, and prognosis.
Related papers
- Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
This study builds a large-size publicly available CT-scan dataset, consisting of more than 13k CT-images of more than 1000 individuals, in which 8k images are taken from 500 patients infected with COVID-19.
We propose a deep learning model for screening COVID-19 using our proposed CT dataset and report the baseline results.
Finally, we extend the proposed CT model for screening COVID-19 from CXR images using a transfer learning approach.
arXiv Detail & Related papers (2020-12-28T11:52:33Z) - CT-CAPS: Feature Extraction-based Automated Framework for COVID-19
Disease Identification from Chest CT Scans using Capsule Networks [33.773060540360625]
The global outbreak of the novel corona virus (COVID-19) has drastically impacted the world and led to one of the most challenging crisis since World War II.
Early diagnosis and isolation of COVID-19 positive cases are considered as crucial steps towards preventing the spread of the disease and flattening the epidemic curve.
Recently, deep learning-based models, mostly based on Convolutional Neural Networks (CNN), have shown promising diagnostic results.
In this paper, a Capsule network framework, referred to as the "CT-CAPS", is presented to automatically extract distinctive features of chest CT scans.
arXiv Detail & Related papers (2020-10-30T03:35:29Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
The aim of this study is to realize automatic severity assessment (non-severe or severe) of COVID-19 based on chest CT images.
A random forest (RF) model is trained to assess the severity (non-severe or severe) based on quantitative features.
Several quantitative features, which have the potential to reflect the severity of COVID-19, were revealed.
arXiv Detail & Related papers (2020-03-26T15:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.