A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification
- URL: http://arxiv.org/abs/2410.14536v1
- Date: Fri, 18 Oct 2024 15:23:34 GMT
- Title: A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification
- Authors: Maksuda Akter, Rabea Khatun, Md Manowarul Islam,
- Abstract summary: Leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation.
Deep learning has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells.
In this research, hybrid deep learning models were implemented to classify Acute lymphoblastic leukemia (ALL)
The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset.
- Score: 1.024113475677323
- License:
- Abstract: Acute lymphoblastic leukemia (ALL) is the most malignant form of leukemia and the most common cancer in adults and children. Traditionally, leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation. However, these methods are expensive, time consuming, and highly dependent on expert knowledge. In recent years, deep learning, particularly Convolutional Neural Networks (CNNs), has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells. These approaches are quick, cost effective, and not subject to human bias. However, most methods lack the ability to quantify uncertainty, which could lead to critical misdiagnoses. In this research, hybrid deep learning models (InceptionV3-GRU, EfficientNetB3-GRU, MobileNetV2-GRU) were implemented to classify ALL. Bayesian optimization was used to fine tune the model's hyperparameters and improve its performance. Additionally, Deep Ensemble uncertainty quantification was applied to address uncertainty during leukemia image classification. The proposed models were trained on the publicly available datasets ALL-IDB1 and ALL-IDB2. Their results were then aggregated at the score level using the sum rule. The parallel architecture used in these models offers a high level of confidence in differentiating between ALL and non-ALL cases. The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset, demonstrating its potential for accurate and reliable leukemia diagnosis.
Related papers
- Acute Lymphoblastic Leukemia Diagnosis Employing YOLOv11, YOLOv8, ResNet50, and Inception-ResNet-v2 Deep Learning Models [0.0]
This study aims to utilize image processing and deep learning methodologies to achieve state-of-the-art results for the detection of Acute Lymphoblastic Leukemia (ALL)
By utilizing advanced deep learning models, namely, YOLOv8, YOLOv11, ResNet50 and Inception-ResNet-v2, the study achieves accuracy rates as high as 99.7%.
arXiv Detail & Related papers (2025-02-13T22:43:28Z) - Detection and Classification of Acute Lymphoblastic Leukemia Utilizing Deep Transfer Learning [0.0]
This study proposes a novel approach for diagnosing leukemia across four stages.
We employed two Convolutional Neural Network (CNN) models as MobileNetV2 with an altered head and a custom model.
The custom model achieved an accuracy of 98.6%, while MobileNetV2 attained a superior accuracy of 99.69%.
arXiv Detail & Related papers (2025-01-24T04:16:03Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - MMIL: A novel algorithm for disease associated cell type discovery [58.044870442206914]
Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease.
We introduce Mixture Modeling for Multiple Learning Instance (MMIL), an expectation method that enables the training and calibration of cell-level classifiers.
arXiv Detail & Related papers (2024-06-12T15:22:56Z) - A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods [6.318593483920089]
Acute lymphoblastic leukemia (ALL) severity is determined by the presence and ratios of blast cells.
In this paper, a ResNet-based feature extractor is utilized to detect ALL, along with a variety of feature selectors and classifiers.
This technique got an impressive 90.71% accuracy and 95.76% sensitivity for the relevant classifications, and its metrics on this dataset outperformed others.
arXiv Detail & Related papers (2024-06-02T13:25:44Z) - Adaptive Multiscale Retinal Diagnosis: A Hybrid Trio-Model Approach for Comprehensive Fundus Multi-Disease Detection Leveraging Transfer Learning and Siamese Networks [0.0]
WHO has declared that more than 2.2 billion people worldwide are suffering from visual disorders, such as media haze, glaucoma, and drusen.
At least 1 billion of these cases could have been either prevented or successfully treated, yet they remain unaddressed due to poverty, a lack of specialists, inaccurate ocular fundus diagnoses by ophthalmologists, or the presence of a rare disease.
To address this, the research has developed the Hybrid Trio-Network Model Algorithm for accurately diagnosing 12 distinct common and rare eye diseases.
arXiv Detail & Related papers (2024-05-28T03:06:10Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
We present findings from the largest Federated ML study to-date, involving data from 71 healthcare institutions across 6 continents.
We generate an automatic tumor boundary detector for the rare disease of glioblastoma.
We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent.
arXiv Detail & Related papers (2022-04-22T17:27:00Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
This article has automated the ALL detection task from microscopic cell images, employing deep Convolutional Neural Networks (CNNs)
Various data augmentations and pre-processing are incorporated for achieving a better generalization of the network.
Our proposed weighted ensemble model, using the kappa values of the ensemble candidates as their weights, has outputted a weighted F1-score of 88.6 %, a balanced accuracy of 86.2 %, and an AUC of 0.941 in the preliminary test set.
arXiv Detail & Related papers (2021-05-09T18:58:48Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.