論文の概要: ddml: Double/debiased machine learning in Stata
- arxiv url: http://arxiv.org/abs/2301.09397v3
- Date: Sat, 6 Jan 2024 13:17:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-10 00:23:02.436594
- Title: ddml: Double/debiased machine learning in Stata
- Title(参考訳): ddml:stataのダブル/デバイアス機械学習
- Authors: Achim Ahrens, Christian B. Hansen, Mark E. Schaffer, Thomas Wiemann
- Abstract要約: 本稿では,Double/Debiased Machine Learning (DDML) のパッケージ ddml について紹介する。
ddmlは、スタタの既存の教師付き機械学習プログラムと互換性がある。
- 参考スコア(独自算出の注目度): 2.8880000014100506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce the package ddml for Double/Debiased Machine Learning (DDML) in
Stata. Estimators of causal parameters for five different econometric models
are supported, allowing for flexible estimation of causal effects of endogenous
variables in settings with unknown functional forms and/or many exogenous
variables. ddml is compatible with many existing supervised machine learning
programs in Stata. We recommend using DDML in combination with stacking
estimation which combines multiple machine learners into a final predictor. We
provide Monte Carlo evidence to support our recommendation.
- Abstract(参考訳): 本稿では,Double/Debiased Machine Learning (DDML) のパッケージddmlを紹介する。
5つの異なる計量モデルに対する因果パラメータの推定がサポートされ、未知の機能形式や多くの外因性変数の設定において内因性変数の因果効果を柔軟に推定することができる。
ddmlは、スタタの既存の教師付き機械学習プログラムと互換性がある。
マルチマシン学習者を最終予測器に組み合わせたスタック推定とddmlを併用することを推奨する。
我々は推薦を支持するためにモンテカルロの証拠を提供する。
関連論文リスト
- Hyperparameter Tuning for Causal Inference with Double Machine Learning:
A Simulation Study [4.526082390949313]
機械学習手法の予測性能と結果の因果推定との関係を実証的に評価する。
我々は,2019 Atlantic Causal Inference Conference Data Challengeのデータを用いて,広範囲にわたるシミュレーション研究を行う。
論文 参考訳(メタデータ) (2024-02-07T09:01:51Z) - Model Averaging and Double Machine Learning [2.6436521007616114]
DDMLは, 従来の代替手法よりも, 部分的に未知の機能形式に対して頑健であることを示す。
提案を実装したStaとRのソフトウェアを提供する。
論文 参考訳(メタデータ) (2024-01-03T09:38:13Z) - Adaptive debiased machine learning using data-driven model selection
techniques [0.5735035463793007]
Adaptive Debiased Machine Learning (ADML)は、データ駆動型モデル選択と非バイアス型機械学習技術を組み合わせた非バイアス型フレームワークである。
ADMLはモデルの誤特定によるバイアスを回避し、パラメトリックモデルとセミモデルの制約から解放される。
適応的部分線形回帰モデルにおける平均処理効果を推定するためのADML推定器の幅広いクラスを提供する。
論文 参考訳(メタデータ) (2023-07-24T06:16:17Z) - Matched Machine Learning: A Generalized Framework for Treatment Effect
Inference With Learned Metrics [87.05961347040237]
我々は、機械学習ブラックボックスの柔軟性とマッチングの解釈可能性を組み合わせたフレームワークであるMatched Machine Learningを紹介する。
我々のフレームワークは機械学習を用いて、一致した単位を学習し、結果を推定する最適な指標を学習する。
一致機械学習のインスタンスはブラックボックスの機械学習手法と同等に動作し、類似した問題に対する既存のマッチング手法よりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2023-04-03T19:32:30Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
CML(Collaborative Metric Learning)は、リコメンデーションシステムにおいて人気のある手法として最近登場した。
本稿では,ユーザが複数のカテゴリの関心を持つ,困難なシナリオに焦点をあてる。
textitDiversity-Promoting Collaborative Metric Learning (DPCML) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-30T08:02:18Z) - LIFE: Learning Individual Features for Multivariate Time Series
Prediction with Missing Values [71.52335136040664]
本稿では,MTS予測のための新しいパラダイムを提供する学習個人特徴(LIFE)フレームワークを提案する。
LIFEは、相関次元を補助情報として使用し、非相関次元からの干渉を欠落値で抑制することにより、予測のための信頼性の高い特徴を生成する。
3つの実世界のデータセットの実験は、既存の最先端モデルに対するLIFEの優位性を検証する。
論文 参考訳(メタデータ) (2021-09-30T04:53:24Z) - Learning Log-Determinant Divergences for Positive Definite Matrices [47.61701711840848]
本稿では,データ駆動方式で類似度を学習することを提案する。
スカラーアルファとベータによってパラメトリ化されたメタダイバージェンスであるalphabeta-log-detの発散を利用する。
私たちの重要なアイデアは、これらのパラメータを連続体にキャストし、データから学ぶことです。
論文 参考訳(メタデータ) (2021-04-13T19:09:43Z) - DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R [4.830430752756141]
RパッケージのDoubleMLは、ダブル/デバイアスの機械学習フレームワークを実装している。
機械学習手法に基づいた因果モデルでパラメータを推定する機能を提供する。
論文 参考訳(メタデータ) (2021-03-17T12:42:41Z) - The Paradigm Discovery Problem [121.79963594279893]
我々は、パラダイム発見問題を定式化し、システム判定のためのメトリクスを開発する。
5つの多言語に対する経験的結果について報告する。
私たちのコードとデータは公開されています。
論文 参考訳(メタデータ) (2020-05-04T16:38:54Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。