論文の概要: ECGAN: Self-supervised generative adversarial network for
electrocardiography
- arxiv url: http://arxiv.org/abs/2301.09496v1
- Date: Mon, 23 Jan 2023 15:48:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:16:38.554070
- Title: ECGAN: Self-supervised generative adversarial network for
electrocardiography
- Title(参考訳): ECGAN : 心電図用自己教師付き生成対向ネットワーク
- Authors: Lorenzo Simone and Davide Bacciu
- Abstract要約: 高品質な合成データは、バイオメディカルタスクのための効果的な予測モデルの開発を支援することができる。
これらの制限は、例えば不整脈に関する心電図データセットへのオープンアクセスに悪影響を及ぼす。
本研究は, 人工心電図時系列生成における自己監督的アプローチを導入する。
- 参考スコア(独自算出の注目度): 11.460692362624533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality synthetic data can support the development of effective
predictive models for biomedical tasks, especially in rare diseases or when
subject to compelling privacy constraints. These limitations, for instance,
negatively impact open access to electrocardiography datasets about
arrhythmias. This work introduces a self-supervised approach to the generation
of synthetic electrocardiography time series which is shown to promote
morphological plausibility. Our model (ECGAN) allows conditioning the
generative process for specific rhythm abnormalities, enhancing synchronization
and diversity across samples with respect to literature models. A dedicated
sample quality assessment framework is also defined, leveraging arrhythmia
classifiers. The empirical results highlight a substantial improvement against
state-of-the-art generative models for sequences and audio synthesis.
- Abstract(参考訳): 高品質な合成データは、特にまれな疾患や魅力的なプライバシー制約を受ける場合に、バイオメディカルタスクの効果的な予測モデルの開発を支援することができる。
これらの制限は、例えば不整脈に関する心電図データセットへのオープンアクセスに悪影響を及ぼす。
本研究は, 形態学的妥当性の向上を図った人工心電図時系列生成への自己監督的アプローチを導入する。
我々のモデル(ECGAN)は、特定のリズム異常に対する生成過程の条件付けを可能にし、文献モデルに関するサンプル間の同期と多様性を向上する。
不整脈分類器を利用する専用サンプル品質評価フレームワークも定義されている。
経験的な結果は、シーケンスと音声合成の最先端生成モデルに対する大幅な改善を浮き彫りにしている。
関連論文リスト
- Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
マルチモーダル単細胞数に対するフローベース条件生成モデルであるセルフロー・フォー・ジェネレーションを提案する。
本研究は, 新規な生成タスクを考慮に入れた上で, 重要な生物学的データ特性の回復性の向上を示唆するものである。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
拡散モデルは近年大きく進歩し、実際のモデルに匹敵するデータを合成する可能性を生み出している。
本稿では,SSSD-ECGに基づくSSSD-ECG-nleアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-07-15T16:31:25Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
本稿では,データセットに固有の不均衡を,合成データの生成によって緩和する手法を提案する。
我々は,患者メタデータと心臓の形状から合成したテキストを条件に,拡散確率モデルに基づく制御ネットを採用する。
本実験は,データセットの不均衡を緩和する手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-03-28T15:41:43Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
逆等角問題の解法としてGeodesic-BPを提案する。
その結果,Geodesic-BPは人工心臓の活性化を高精度に再現できることが示唆された。
パーソナライズド医療への将来のシフトを考えると、Geodesic-BPは将来の心臓モデルの機能化に役立つ可能性がある。
論文 参考訳(メタデータ) (2023-08-16T14:57:12Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - MedDiff: Generating Electronic Health Records using Accelerated
Denoising Diffusion Model [5.677138915301383]
電子健康記録への最初の応用である拡散モデルに基づく新しい生成モデルを提案する。
本モデルでは,ラベル情報を保存するために,クラス条件サンプリングを行う機構を提案する。
論文 参考訳(メタデータ) (2023-02-08T22:06:34Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
本研究は,GAN(Generative Adversarial Network)ファミリーから5つの異なるモデルの合成ECG生成能力について検討した。
以上の結果から, 全ての実験モデルにおいて, 形態学的特徴に高い類似性を有する許容心拍の大量生成に成功できることが示唆された。
論文 参考訳(メタデータ) (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。