論文の概要: ECGAN: Self-supervised generative adversarial network for
electrocardiography
- arxiv url: http://arxiv.org/abs/2301.09496v1
- Date: Mon, 23 Jan 2023 15:48:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:16:38.554070
- Title: ECGAN: Self-supervised generative adversarial network for
electrocardiography
- Title(参考訳): ECGAN : 心電図用自己教師付き生成対向ネットワーク
- Authors: Lorenzo Simone and Davide Bacciu
- Abstract要約: 高品質な合成データは、バイオメディカルタスクのための効果的な予測モデルの開発を支援することができる。
これらの制限は、例えば不整脈に関する心電図データセットへのオープンアクセスに悪影響を及ぼす。
本研究は, 人工心電図時系列生成における自己監督的アプローチを導入する。
- 参考スコア(独自算出の注目度): 11.460692362624533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality synthetic data can support the development of effective
predictive models for biomedical tasks, especially in rare diseases or when
subject to compelling privacy constraints. These limitations, for instance,
negatively impact open access to electrocardiography datasets about
arrhythmias. This work introduces a self-supervised approach to the generation
of synthetic electrocardiography time series which is shown to promote
morphological plausibility. Our model (ECGAN) allows conditioning the
generative process for specific rhythm abnormalities, enhancing synchronization
and diversity across samples with respect to literature models. A dedicated
sample quality assessment framework is also defined, leveraging arrhythmia
classifiers. The empirical results highlight a substantial improvement against
state-of-the-art generative models for sequences and audio synthesis.
- Abstract(参考訳): 高品質な合成データは、特にまれな疾患や魅力的なプライバシー制約を受ける場合に、バイオメディカルタスクの効果的な予測モデルの開発を支援することができる。
これらの制限は、例えば不整脈に関する心電図データセットへのオープンアクセスに悪影響を及ぼす。
本研究は, 形態学的妥当性の向上を図った人工心電図時系列生成への自己監督的アプローチを導入する。
我々のモデル(ECGAN)は、特定のリズム異常に対する生成過程の条件付けを可能にし、文献モデルに関するサンプル間の同期と多様性を向上する。
不整脈分類器を利用する専用サンプル品質評価フレームワークも定義されている。
経験的な結果は、シーケンスと音声合成の最先端生成モデルに対する大幅な改善を浮き彫りにしている。
関連論文リスト
- Human Biophysics as Network Weights: Conditional Generative Models for
Ultra-fast Simulation [59.694872114852835]
深層潜伏変数モデルの要素と条件付き対向学習を組み合わせたハイブリッドアーキテクチャであるBioMimeを提案する。
そこで我々は,BioMimeが人間の筋肉生理学の複雑な数値モデルを正確に模倣できることを実証した。
論文 参考訳(メタデータ) (2022-11-03T14:49:02Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
EHR-M-GAN (Generative Adversarial Network, GAN) は、EHRデータを合成する。
EHR-M-GANは,141,488名の患者を対象とし,3つの公用集中治療単位データベース上で検証した。
論文 参考訳(メタデータ) (2021-12-22T17:17:34Z) - Synthetic ECG Signal Generation Using Generative Neural Networks [7.122393663641668]
本研究は,GAN(Generative Adversarial Network)ファミリーから5つの異なるモデルの合成ECG生成能力について検討した。
以上の結果から, 全ての実験モデルにおいて, 形態学的特徴に高い類似性を有する許容心拍の大量生成に成功できることが示唆された。
論文 参考訳(メタデータ) (2021-12-05T20:28:55Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG synthesis with Neural ODE and GAN models [0.8960992912176574]
ECGのような連続医療時系列データは、その動的および高次元特性のために最も複雑な時系列の1つである。
本研究では,ニューラルODEモデルを用いて合成正弦波と合成心電図を生成する。
論文 参考訳(メタデータ) (2021-10-30T19:17:20Z) - Improving the efficacy of Deep Learning models for Heart Beat detection
on heterogeneous datasets [0.0]
ヘテロジニアスデータセットにディープラーニングモデルを適用する際の問題点について検討する。
本研究では,健常者からのデータに基づいてトレーニングしたモデルの性能が,心疾患患者に適用した場合に低下することを示す。
次に、異なるデータセットにモデルを適応させるためのTransfer Learningの使用を評価します。
論文 参考訳(メタデータ) (2021-10-26T14:26:55Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - A Model-Based Approach to Synthetic Data Set Generation for
Patient-Ventilator Waveforms for Machine Learning and Educational Use [0.0]
機械学習と教育利用のための合成データセットを生成するモデルベースのアプローチを提案する。
文献中の測定結果から得られた9種類の患者原型を用いて合成データセットを生成した。
論文 参考訳(メタデータ) (2021-03-29T15:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。