Federated Sufficient Dimension Reduction Through High-Dimensional Sparse
Sliced Inverse Regression
- URL: http://arxiv.org/abs/2301.09500v1
- Date: Mon, 23 Jan 2023 15:53:06 GMT
- Title: Federated Sufficient Dimension Reduction Through High-Dimensional Sparse
Sliced Inverse Regression
- Authors: Wenquan Cui, Yue Zhao, Jianjun Xu, Haoyang Cheng
- Abstract summary: Federated learning has become a popular tool in the big data era nowadays.
We propose a federated sparse sliced inverse regression algorithm for the first time.
- Score: 4.561305216067566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has become a popular tool in the big data era nowadays. It
trains a centralized model based on data from different clients while keeping
data decentralized. In this paper, we propose a federated sparse sliced inverse
regression algorithm for the first time. Our method can simultaneously estimate
the central dimension reduction subspace and perform variable selection in a
federated setting. We transform this federated high-dimensional sparse sliced
inverse regression problem into a convex optimization problem by constructing
the covariance matrix safely and losslessly. We then use a linearized
alternating direction method of multipliers algorithm to estimate the central
subspace. We also give approaches of Bayesian information criterion and
hold-out validation to ascertain the dimension of the central subspace and the
hyper-parameter of the algorithm. We establish an upper bound of the
statistical error rate of our estimator under the heterogeneous setting. We
demonstrate the effectiveness of our method through simulations and real world
applications.
Related papers
- A Historical Trajectory Assisted Optimization Method for Zeroth-Order Federated Learning [24.111048817721592]
Federated learning heavily relies on distributed gradient descent techniques.
In the situation where gradient information is not available, gradients need to be estimated from zeroth-order information.
We propose a non-isotropic sampling method to improve the gradient estimation procedure.
arXiv Detail & Related papers (2024-09-24T10:36:40Z) - Riemannian Federated Learning via Averaging Gradient Stream [8.75592575216789]
This paper develops and analyzes an efficient Federated Averaging Gradient Stream (RFedAGS) algorithm.
Numerical simulations conducted on synthetic and real-world data demonstrate the performance of the proposed RFedAGS.
arXiv Detail & Related papers (2024-09-11T12:28:42Z) - A Bayesian Approach Toward Robust Multidimensional Ellipsoid-Specific Fitting [0.0]
This work presents a novel and effective method for fitting multidimensional ellipsoids to scattered data in the contamination of noise and outliers.
We incorporate a uniform prior distribution to constrain the search for primitive parameters within an ellipsoidal domain.
We apply it to a wide range of practical applications such as microscopy cell counting, 3D reconstruction, geometric shape approximation, and magnetometer calibration tasks.
arXiv Detail & Related papers (2024-07-27T14:31:51Z) - Implicit Manifold Gaussian Process Regression [49.0787777751317]
Gaussian process regression is widely used to provide well-calibrated uncertainty estimates.
It struggles with high-dimensional data because of the implicit low-dimensional manifold upon which the data actually lies.
In this paper we propose a technique capable of inferring implicit structure directly from data (labeled and unlabeled) in a fully differentiable way.
arXiv Detail & Related papers (2023-10-30T09:52:48Z) - Iterative Sketching for Secure Coded Regression [66.53950020718021]
We propose methods for speeding up distributed linear regression.
Specifically, we randomly rotate the basis of the system of equations and then subsample blocks, to simultaneously secure the information and reduce the dimension of the regression problem.
arXiv Detail & Related papers (2023-08-08T11:10:42Z) - Distributed Semi-Supervised Sparse Statistical Inference [6.685997976921953]
A debiased estimator is a crucial tool in statistical inference for high-dimensional model parameters.
Traditional methods require computing a debiased estimator on every machine.
An efficient multi-round distributed debiased estimator, which integrates both labeled and unlabelled data, is developed.
arXiv Detail & Related papers (2023-06-17T17:30:43Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Dimension Reduction and Data Visualization for Fr\'echet Regression [8.713190936209156]
Fr'echet regression model provides a promising framework for regression analysis with metric spacevalued responses.
We introduce a flexible sufficient dimension reduction (SDR) method for Fr'echet regression to achieve two purposes.
arXiv Detail & Related papers (2021-10-01T15:01:32Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Feature Manipulation Attacks Against Linear Regression [64.54500628124511]
In this paper, we investigate how to manipulate the coefficients obtained via linear regression by adding carefully designed poisoning data points to the dataset or modify the original data points.
Given the energy budget, we first provide the closed-form solution of the optimal poisoning data point when our target is modifying one designated regression coefficient.
We then extend the analysis to the more challenging scenario where the attacker aims to change one particular regression coefficient while making others to be changed as small as possible.
arXiv Detail & Related papers (2020-02-29T04:26:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.