論文の概要: Selective Explanations: Leveraging Human Input to Align Explainable AI
- arxiv url: http://arxiv.org/abs/2301.09656v1
- Date: Mon, 23 Jan 2023 19:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 15:06:07.680458
- Title: Selective Explanations: Leveraging Human Input to Align Explainable AI
- Title(参考訳): 選択的な説明: 人間の入力を説明可能なAIに活用する
- Authors: Vivian Lai, Yiming Zhang, Chacha Chen, Q. Vera Liao, Chenhao Tan
- Abstract要約: 人間の入力を小さなサンプルに利用して選択的な説明を生成するための一般的なフレームワークを提案する。
事例として,意思決定支援タスクを用いて,意思決定者が決定タスクにどう関係するかに基づいて,選択的な説明を探索する。
我々の実験は、AIへの過度な依存を減らすための選択的な説明の可能性を実証している。
- 参考スコア(独自算出の注目度): 40.33998268146951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While a vast collection of explainable AI (XAI) algorithms have been
developed in recent years, they are often criticized for significant gaps with
how humans produce and consume explanations. As a result, current XAI
techniques are often found to be hard to use and lack effectiveness. In this
work, we attempt to close these gaps by making AI explanations selective -- a
fundamental property of human explanations -- by selectively presenting a
subset from a large set of model reasons based on what aligns with the
recipient's preferences. We propose a general framework for generating
selective explanations by leveraging human input on a small sample. This
framework opens up a rich design space that accounts for different selectivity
goals, types of input, and more. As a showcase, we use a decision-support task
to explore selective explanations based on what the decision-maker would
consider relevant to the decision task. We conducted two experimental studies
to examine three out of a broader possible set of paradigms based on our
proposed framework: in Study 1, we ask the participants to provide their own
input to generate selective explanations, with either open-ended or
critique-based input. In Study 2, we show participants selective explanations
based on input from a panel of similar users (annotators). Our experiments
demonstrate the promise of selective explanations in reducing over-reliance on
AI and improving decision outcomes and subjective perceptions of the AI, but
also paint a nuanced picture that attributes some of these positive effects to
the opportunity to provide one's own input to augment AI explanations. Overall,
our work proposes a novel XAI framework inspired by human communication
behaviors and demonstrates its potentials to encourage future work to better
align AI explanations with human production and consumption of explanations.
- Abstract(参考訳): 近年、説明可能なAI(XAI)アルゴリズムの膨大なコレクションが開発されているが、人間による説明の作り方や消費方法との大きなギャップについてはしばしば批判されている。
その結果、現在のXAI技術は使用が難しく、有効性が欠如していることがしばしば見出される。
本研究では,人間の説明の基本的な特性であるai説明を,受取人の選好と一致するものに基づいて,多数のモデル理由のサブセットを選択的に提示することにより,これらのギャップを解消しようとする。
人間の入力を小さなサンプルに利用して選択的な説明を生成するための一般的なフレームワークを提案する。
このフレームワークは、異なる選択目標、入力の種類などを考慮したリッチな設計空間を開きます。
事例として,意思決定支援タスクを用いて,意思決定者が決定タスクにどう関係するかに基づいて,選択的な説明を探索する。
実験1では,提案する枠組みに基づいて,より広範なパラダイムの3つのうち3つを検討する実験を行った: 実験1では,参加者に対して,オープン・リミテッドと批判的インプットのいずれでも,選択的な説明を生成するための独自のインプットを提供することを依頼する。
研究2では、類似ユーザ(アノテーション)のパネルからの入力に基づいて、参加者の選択的な説明を示す。
我々の実験は、aiへの過度な依存を減らし、aiの判断結果や主観的知覚を改善するための選択的説明の可能性を実証すると同時に、これらのポジティブな効果のいくつかを、aiの説明を補強するための自身のインプットを提供する機会に特徴づけるニュアンス付き図を描いています。
我々の研究は、人間のコミュニケーション行動にインスパイアされた新しいXAIフレームワークを提案し、AI説明と人間の生産と説明の消費をより良く整合させるための今後の作業を促進する可能性を実証している。
関連論文リスト
- Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - INTERACTION: A Generative XAI Framework for Natural Language Inference
Explanations [58.062003028768636]
現在のXAIアプローチは、ひとつの説明を提供することにのみ焦点をあてています。
本稿では、生成型XAIフレームワーク、InterACTION(explaIn aNd predicT thEn queRy with contextuAl CondiTional variational autO-eNcoder)を提案する。
提案するフレームワークは,説明とラベル予測の2つのステップ,および(ステップ2)異種証拠生成の2つのステップで説明を行う。
論文 参考訳(メタデータ) (2022-09-02T13:52:39Z) - The Who in Explainable AI: How AI Background Shapes Perceptions of AI
Explanations [14.259207750786285]
我々は、AIの背景と背景のない2つの異なるグループの売春婦が、異なるタイプのAI説明を知覚する方法について、混合方法論による研究を行う。
私たちは、信頼、知性、理解可能性、第二のチャンス、友好性の5つの側面に沿って、知覚が何であるかを定量的に共有します。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - Understanding the Effect of Out-of-distribution Examples and Interactive
Explanations on Human-AI Decision Making [19.157591744997355]
典型的な実験的なセットアップは、人間-AIチームの可能性を制限します。
インタラクティブな説明を支援する新しいインターフェースを開発し、人間がAI支援に積極的に取り組みます。
論文 参考訳(メタデータ) (2021-01-13T19:01:32Z) - Explainable AI and Adoption of Algorithmic Advisors: an Experimental
Study [0.6875312133832077]
参加者は,人間あるいはアルゴリズムのアドバイザリからアドバイスを受けながら,webベースのゲームをプレイする実験手法を開発した。
異なる種類の説明が採用準備、支払い意欲、および金融AIコンサルタントの信頼に影響を与えるかどうかを評価します。
初対面時の導入を促進する説明の種類は,失敗後の最も成功したものや,コストのかかるものとは異なることが分かりました。
論文 参考訳(メタデータ) (2021-01-05T09:34:38Z) - Explanations of Black-Box Model Predictions by Contextual Importance and
Utility [1.7188280334580195]
本稿では,初級者だけでなく専門家が容易に理解できる説明を抽出するために,文脈重要度(CI)と文脈実用性(CU)の概念を提案する。
本手法は,モデルを解釈可能なモデルに変換することなく予測結果を説明する。
カーセレクションの例とアイリスの花分類における説明の有用性を,完全な(つまり,個人の予測の原因)と対照的な説明を提示することによって示す。
論文 参考訳(メタデータ) (2020-05-30T06:49:50Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。