論文の概要: Selective Explanations: Leveraging Human Input to Align Explainable AI
- arxiv url: http://arxiv.org/abs/2301.09656v2
- Date: Wed, 24 May 2023 18:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 22:59:09.321862
- Title: Selective Explanations: Leveraging Human Input to Align Explainable AI
- Title(参考訳): 選択的な説明: 人間の入力を説明可能なAIに活用する
- Authors: Vivian Lai, Yiming Zhang, Chacha Chen, Q. Vera Liao, Chenhao Tan
- Abstract要約: 人間の入力を小さなサンプルに利用して選択的な説明を生成するための一般的なフレームワークを提案する。
事例として,意思決定支援タスクを用いて,意思決定者が決定タスクにどう関係するかに基づいて,選択的な説明を探索する。
我々の実験は、AIへの過度な依存を減らすための選択的な説明の可能性を実証している。
- 参考スコア(独自算出の注目度): 40.33998268146951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While a vast collection of explainable AI (XAI) algorithms have been
developed in recent years, they are often criticized for significant gaps with
how humans produce and consume explanations. As a result, current XAI
techniques are often found to be hard to use and lack effectiveness. In this
work, we attempt to close these gaps by making AI explanations selective -- a
fundamental property of human explanations -- by selectively presenting a
subset from a large set of model reasons based on what aligns with the
recipient's preferences. We propose a general framework for generating
selective explanations by leveraging human input on a small sample. This
framework opens up a rich design space that accounts for different selectivity
goals, types of input, and more. As a showcase, we use a decision-support task
to explore selective explanations based on what the decision-maker would
consider relevant to the decision task. We conducted two experimental studies
to examine three out of a broader possible set of paradigms based on our
proposed framework: in Study 1, we ask the participants to provide their own
input to generate selective explanations, with either open-ended or
critique-based input. In Study 2, we show participants selective explanations
based on input from a panel of similar users (annotators). Our experiments
demonstrate the promise of selective explanations in reducing over-reliance on
AI and improving decision outcomes and subjective perceptions of the AI, but
also paint a nuanced picture that attributes some of these positive effects to
the opportunity to provide one's own input to augment AI explanations. Overall,
our work proposes a novel XAI framework inspired by human communication
behaviors and demonstrates its potentials to encourage future work to better
align AI explanations with human production and consumption of explanations.
- Abstract(参考訳): 近年、説明可能なAI(XAI)アルゴリズムの膨大なコレクションが開発されているが、人間による説明の作り方や消費方法との大きなギャップについてはしばしば批判されている。
その結果、現在のXAI技術は使用が難しく、有効性が欠如していることがしばしば見出される。
本研究では,人間の説明の基本的な特性であるai説明を,受取人の選好と一致するものに基づいて,多数のモデル理由のサブセットを選択的に提示することにより,これらのギャップを解消しようとする。
人間の入力を小さなサンプルに利用して選択的な説明を生成するための一般的なフレームワークを提案する。
このフレームワークは、異なる選択目標、入力の種類などを考慮したリッチな設計空間を開きます。
事例として,意思決定支援タスクを用いて,意思決定者が決定タスクにどう関係するかに基づいて,選択的な説明を探索する。
実験1では,提案する枠組みに基づいて,より広範なパラダイムの3つのうち3つを検討する実験を行った: 実験1では,参加者に対して,オープン・リミテッドと批判的インプットのいずれでも,選択的な説明を生成するための独自のインプットを提供することを依頼する。
研究2では、類似ユーザ(アノテーション)のパネルからの入力に基づいて、参加者の選択的な説明を示す。
我々の実験は、aiへの過度な依存を減らし、aiの判断結果や主観的知覚を改善するための選択的説明の可能性を実証すると同時に、これらのポジティブな効果のいくつかを、aiの説明を補強するための自身のインプットを提供する機会に特徴づけるニュアンス付き図を描いています。
我々の研究は、人間のコミュニケーション行動にインスパイアされた新しいXAIフレームワークを提案し、AI説明と人間の生産と説明の消費をより良く整合させるための今後の作業を促進する可能性を実証している。
関連論文リスト
- Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills [24.04643864795939]
人々の意思決定能力は、意思決定支援にAIに頼ると、しばしば改善に失敗する。
ほとんどのAIシステムは、AIの決定を正当化する一方的な説明を提供するが、ユーザーの思考を考慮しない。
我々は、AIの選択と予測された、おそらく人間の選択との違いを説明する、人間中心のコントラスト的な説明を生成するためのフレームワークを紹介します。
論文 参考訳(メタデータ) (2024-10-05T18:21:04Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - In Search of Verifiability: Explanations Rarely Enable Complementary
Performance in AI-Advised Decision Making [25.18203172421461]
説明は、人間の意思決定者がAIの予測の正しさを検証できる範囲でのみ有用である、と我々は主張する。
また、補完性能の目的と適切な依存度を比較し、後者を結果段階と戦略段階の信頼度の概念に分解する。
論文 参考訳(メタデータ) (2023-05-12T18:28:04Z) - Understanding the Role of Human Intuition on Reliance in Human-AI
Decision-Making with Explanations [44.01143305912054]
意思決定者の直感がAI予測と説明の使用に与える影響について検討する。
以上の結果から,AIの予測と説明に関する3種類の直観が明らかになった。
これらの経路を用いて、なぜ機能に基づく説明が参加者の決定結果を改善しなかったのかを説明し、AIへの依存度を高めた。
論文 参考訳(メタデータ) (2023-01-18T01:33:50Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Understanding the Effect of Out-of-distribution Examples and Interactive
Explanations on Human-AI Decision Making [19.157591744997355]
典型的な実験的なセットアップは、人間-AIチームの可能性を制限します。
インタラクティブな説明を支援する新しいインターフェースを開発し、人間がAI支援に積極的に取り組みます。
論文 参考訳(メタデータ) (2021-01-13T19:01:32Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。