論文の概要: Breaking the Boundaries of Knowledge Space: Analyzing the Knowledge
Spanning on the Q&A Website through Word Embeddings
- arxiv url: http://arxiv.org/abs/2301.09739v2
- Date: Mon, 30 Jan 2023 02:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 13:43:43.186034
- Title: Breaking the Boundaries of Knowledge Space: Analyzing the Knowledge
Spanning on the Q&A Website through Word Embeddings
- Title(参考訳): 知識空間の境界を破る: 単語埋め込みによるq&a webサイトにおける知識の分析
- Authors: Haochuan Cui, Tiewei Li, Cheng-Jun Wang
- Abstract要約: 本稿では,単語埋め込みモデルを用いた質問の魅力と,大規模オンライン知識市場から収集したデータに及ぼす知識の影響について検討する。
質問の魅力はしきい値まで上昇し、その後は肯定的な効果が逆転する。
今後の知識再結合研究におけるこれらの知見の理論的および実践的意義について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The challenge of raising a creative question exists in recombining different
categories of knowledge. However, the impact of recombination remains
controversial. Drawing on the theories of knowledge recombination and category
spanning, we propose that both the distance of knowledge spanning and the
hierarchy of knowledge shape the appeal of questions. Using word embedding
models and the data collected from a large online knowledge market (N =
463,545), we find that the impact of knowledge spanning on the appeal of
questions is parabolic: the appeal of questions increases up to a threshold,
after which point the positive effect reverses. However, the nonlinear
influence of knowledge spanning is contingent upon the hierarchy of knowledge.
The theoretical and practical implications of these findings for future
research on knowledge recombination are discussed. We fill the research gap by
conceptualizing question asking as knowledge spanning and highlighting the
theoretical underpinnings of the knowledge hierarchy.
- Abstract(参考訳): 創造的な疑問を提起する課題は、異なるカテゴリの知識を再結合することにある。
しかし、再結合の影響はいまだに議論の余地がある。
知識再結合理論とカテゴリー分割理論に基づいて,知識の距離と知識の階層構造が質問の魅力を形作ることを提案する。
単語埋め込みモデルと大規模なオンライン知識市場(N = 463,545)から収集したデータを用いて、質問の魅力にまたがる知識の影響は放物的であることが判明した。
しかし、知識スパンニングの非線形影響は知識の階層に付随する。
今後の知識再結合研究におけるこれらの知見の理論的および実践的意義について論じる。
本研究は,知識階層の理論的基盤を強調する知識としての質問を概念化し,研究ギャップを埋める。
関連論文リスト
- Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Rainier: Reinforced Knowledge Introspector for Commonsense Question
Answering [74.90418840431425]
そこで,Rainier(Reinforced Knowledge Introspector,Reinforced Knowledge Introspector,Reinforced Knowledge Introspector)を提案する。
我々のアプローチは、GPT-3で生成された知識を模倣することから始まり、強化学習を通して独自の知識を生み出すことを学ぶ。
本研究は,GPT-3より桁違いに小さいモデルで生成した知識が,GPT-3から抽出した知識の質を超えうることを報告した最初の事例である。
論文 参考訳(メタデータ) (2022-10-06T17:34:06Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - Coarse-to-Careful: Seeking Semantic-related Knowledge for Open-domain
Commonsense Question Answering [12.406729445165857]
背景コモンセンスを必要とする質問に機械が答えるのを助けるために、外部知識を利用するのが一般的である。
本稿では,知識注入を粗大から粗大に制御する意味駆動型知識認識型QAフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-04T10:56:36Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z) - Incremental Knowledge Based Question Answering [52.041815783025186]
人間と同じように学習能力を段階的に拡張できるインクリメンタルKBQA学習フレームワークを提案します。
具体的には、破滅的な忘れ問題を克服するために、マージン希釈損失と協調選択方法からなる。
包括的な実験は、進化する知識ベースに取り組む際にその効果と効率を示す。
論文 参考訳(メタデータ) (2021-01-18T09:03:38Z) - KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain
Knowledge-Based VQA [107.7091094498848]
VQAの最も難しい質問の1つは、質問に答えるために画像に存在しない外部の知識を必要とする場合です。
本研究では,解答に必要な知識が与えられたり記入されたりしないオープンドメイン知識を,トレーニング時やテスト時にも検討する。
知識表現と推論には2つのタイプがあります。
まず、トランスベースのモデルで教師なし言語事前トレーニングと教師付きトレーニングデータから効果的に学ぶことができる暗黙的な知識。
論文 参考訳(メタデータ) (2020-12-20T20:13:02Z) - A Data-Driven Study of Commonsense Knowledge using the ConceptNet
Knowledge Base [8.591839265985412]
汎用人工知能(AI)の実現における重要なフロンティアとして,コモンセンス知識と推論の獲得が認められている。
本稿では,コンセプションネットの知識基盤を実証的かつ構造的に分析することにより,コモンセンス知識のより深い理解を可能にする体系的な研究を提案し,実施する。
最先端の教師なしグラフ表現学習(「埋め込み」)とクラスタリング技術を用いて、慎重に設計された3つの研究課題に関する詳細な実験結果から、ConceptNet関係の深いサブ構造を明らかにする。
論文 参考訳(メタデータ) (2020-11-28T08:08:25Z) - Question Answering over Knowledge Base using Language Model Embeddings [0.0]
本稿では,知識ベース質問回答タスクにおける事前学習言語モデルの利用に焦点を当てる。
さらに,これらの埋め込みを知識ベースから質問まで,双方向の注意機構で微調整した。
提案手法は,質問事項を表現するためのマルチヘッドアテンション機構を備えた,単純な畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2020-10-17T22:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。