論文の概要: ASQ-IT: Interactive Explanations for Reinforcement-Learning Agents
- arxiv url: http://arxiv.org/abs/2301.09941v1
- Date: Tue, 24 Jan 2023 11:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 13:42:29.234259
- Title: ASQ-IT: Interactive Explanations for Reinforcement-Learning Agents
- Title(参考訳): ASQ-IT:強化学習エージェントの対話的説明
- Authors: Yotam Amitai, Guy Avni and Ofra Amir
- Abstract要約: 本稿では,ユーザが興味のある行動の時間的特性を記述したクエリに基づいて,その環境に作用するエージェントのビデオクリップを提示する対話型ツールASQ-ITを提案する。
提案手法は,ASQ-ITのユーザインタフェースのクエリを有限トレース(LTLf)上の線形時間論理の断片にマッピングする形式的手法に基づいており,クエリ処理のアルゴリズムはオートマチック理論に基づいている。
- 参考スコア(独自算出の注目度): 7.9603223299524535
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As reinforcement learning methods increasingly amass accomplishments, the
need for comprehending their solutions becomes more crucial. Most explainable
reinforcement learning (XRL) methods generate a static explanation depicting
their developers' intuition of what should be explained and how. In contrast,
literature from the social sciences proposes that meaningful explanations are
structured as a dialog between the explainer and the explainee, suggesting a
more active role for the user and her communication with the agent. In this
paper, we present ASQ-IT -- an interactive tool that presents video clips of
the agent acting in its environment based on queries given by the user that
describe temporal properties of behaviors of interest. Our approach is based on
formal methods: queries in ASQ-IT's user interface map to a fragment of Linear
Temporal Logic over finite traces (LTLf), which we developed, and our algorithm
for query processing is based on automata theory. User studies show that
end-users can understand and formulate queries in ASQ-IT, and that using ASQ-IT
assists users in identifying faulty agent behaviors.
- Abstract(参考訳): 強化学習手法がますます達成されるにつれて、解法を理解する必要性がより重要になる。
最も説明可能な強化学習(XRL)手法は、開発者が説明すべきことや方法に関する直感を記述する静的な説明を生成する。
対照的に、社会科学の文献では、意味のある説明は説明者と説明者との対話として構成され、より積極的な役割とエージェントとのコミュニケーションを示唆している。
本稿では,ユーザが興味のある行動の時間的特性を記述したクエリに基づいて,その環境に作用するエージェントのビデオクリップを提示する対話型ツールASQ-ITを提案する。
提案手法は,ASQ-ITのユーザインタフェースのクエリを有限トレース(LTLf)上の線形時間論理の断片にマッピングする形式的手法に基づいており,クエリ処理のアルゴリズムは自動理論に基づいている。
ユーザスタディは、エンドユーザがASQ-ITでクエリを理解し、定式化できることを示し、ASQ-ITを使用することで、エラーエージェントの動作の特定を支援する。
関連論文リスト
- QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
提案するQLASS(Q-guided Language Agent Stepwise Search)は,Q-valueを推定してアノテーションを自動的に生成する。
ステップワイズガイダンスにより、言語エージェントが長期的価値に適応できるようにQ誘導型生成戦略を提案する。
我々はQLASSが質的分析によってより効果的な意思決定につながることを実証的に実証した。
論文 参考訳(メタデータ) (2025-02-04T18:58:31Z) - Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
エージェントポリシーの近似を説明可能な近似を表す論理規則の集合を学習するために,帰納的な解集合プログラムの学習を利用する。
次に、学習ルールに基づいて回答セット推論を行い、次のバッチで学習エージェントの探索をガイドします。
本手法は,初回トレーニングにおいても,エージェントが達成した割引リターンを著しく向上させる。
論文 参考訳(メタデータ) (2025-01-13T16:13:22Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
自然言語におけるモデルアクティベーションに関するオープンな疑問に答えるタスクであるLatentQAを紹介する。
本稿では,アクティベーションと関連する質問応答ペアのデータセット上で,デコーダLLMを微調整するLatent Interpretation Tuning (LIT)を提案する。
我々のデコーダはまた、ステレオタイプ付き文のモデルのデバイアス化や世代ごとの感情制御など、モデルを制御するために使用する差別化可能な損失も規定している。
論文 参考訳(メタデータ) (2024-12-11T18:59:33Z) - An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-10-23T02:03:49Z) - LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations [26.340786701393768]
対話の形で説明を提供する解釈可能性ツールは,ユーザの理解を高める上で有効であることを示す。
しかしながら、対話ベースの説明のための現在のソリューションは、しばしば外部ツールやモジュールを必要とし、設計されていないタスクに簡単に転送できない。
ユーザがその振る舞いについて,最先端の大規模言語モデル(LLM)とチャットできる,アクセスしやすいツールを提案する。
論文 参考訳(メタデータ) (2024-01-23T09:11:07Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
本稿では,自動解釈可能性評価のためのベンチマークスイートであるFIND(Function Interpretation and Description)を紹介する。
FINDには、トレーニングされたニューラルネットワークのコンポーネントに似た機能と、私たちが生成しようとしている種類の記述が含まれています。
本研究では、事前訓練された言語モデルを用いて、自然言語とコードにおける関数の振る舞いの記述を生成する手法を評価する。
論文 参考訳(メタデータ) (2023-09-07T17:47:26Z) - AVIS: Autonomous Visual Information Seeking with Large Language Model
Agent [123.75169211547149]
本稿では,視覚的質問応答フレームワークAVISを提案する。
本手法は,LLM(Large Language Model)を利用して外部ツールの利用を動的に強化する。
AVIS は Infoseek や OK-VQA などの知識集約型視覚質問応答ベンチマークの最先端結果を達成する。
論文 参考訳(メタデータ) (2023-06-13T20:50:22Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - Generating User-Centred Explanations via Illocutionary Question
Answering: From Philosophy to Interfaces [3.04585143845864]
我々は、AIアルゴリズムの洗練されたパイプラインに基づく対話型説明を生成するための新しいアプローチを示す。
我々の貢献は、コンピュータフレンドリーな方法でイロカチオンをフレーム化して、統計的質問応答によるユーザ中央集権性を実現するためのアプローチである。
XAIをベースとした2つのシステムにおいて,60名以上の参加者を対象とするユーザスタディを用いて仮説を検証した。
論文 参考訳(メタデータ) (2021-10-02T09:06:36Z) - From Philosophy to Interfaces: an Explanatory Method and a Tool Inspired
by Achinstein's Theory of Explanation [3.04585143845864]
人工知能(AI)における新しい説明法を提案する。
我々は、AIアルゴリズムのパイプラインに基づいた対話型説明を生成するための新しいアプローチを示す。
我々はIBMによるよく知られたXAIによる信用承認システムで仮説を検証した。
論文 参考訳(メタデータ) (2021-09-09T11:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。