An Overview of Human Activity Recognition Using Wearable Sensors:
Healthcare and Artificial Intelligence
- URL: http://arxiv.org/abs/2103.15990v1
- Date: Mon, 29 Mar 2021 23:48:51 GMT
- Title: An Overview of Human Activity Recognition Using Wearable Sensors:
Healthcare and Artificial Intelligence
- Authors: Rex Liu, Albara Ah Ramli, Huanle Zhang, Esha Datta, Xin Liu
- Abstract summary: Human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment.
We present our emerging HAR projects for healthcare: identification of human activities for intensive care unit (ICU) patients and Duchenne muscular dystrophy (DMD) patients.
Our HAR systems include hardware design to collect sensor data from ICU patients and DMD patients and accurate AI models to recognize patients' activities.
- Score: 4.04762671215916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of the internet of things (IoT) and artificial
intelligence (AI) technologies, human activity recognition (HAR) has been
applied in a variety of domains such as security and surveillance, human-robot
interaction, and entertainment. Even though a number of surveys and review
papers have been published, there is a lack of HAR overview paper focusing on
healthcare applications that use wearable sensors. Therefore, we fill in the
gap by presenting this overview paper. In particular, we present our emerging
HAR projects for healthcare: identification of human activities for intensive
care unit (ICU) patients and Duchenne muscular dystrophy (DMD) patients. Our
HAR systems include hardware design to collect sensor data from ICU patients
and DMD patients and accurate AI models to recognize patients' activities. This
overview paper covers considerations and settings for building a HAR healthcare
system, including sensor factors, AI model comparison, and system challenges.
Related papers
- A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications.
In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics.
We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD)
This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions.
arXiv Detail & Related papers (2023-09-13T01:01:16Z) - A Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC [54.74071593520785]
Mobile AIGC can be a key enabling technology for an emerging application, called human digital twin (HDT)
HDT empowered by the mobile AIGC is expected to revolutionize the personalized healthcare by generating rare disease data, modeling high-fidelity digital twin, building versatile testbeds, and providing 24/7 customized medical services.
arXiv Detail & Related papers (2023-07-22T15:59:03Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.8688584757794064]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
This study aims to do a comprehensive review of RPM systems including adopted advanced technologies, AI impact on RPM, challenges and trends in AI-enabled RPM.
The role of AI in RPM ranges from physical activity classification to chronic disease monitoring and vital signs monitoring in emergency settings.
This review results show that AI-enabled RPM architectures have transformed healthcare monitoring applications.
arXiv Detail & Related papers (2023-01-19T06:22:14Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
The selective attention mechanism helps the cognition system focus on task-relevant visual clues by ignoring the presence of distractors.
We propose a framework to leverage gaze for medical image analysis tasks with small training data.
Our method is demonstrated to achieve superior performance on both 3D tumor segmentation and 2D chest X-ray classification tasks.
arXiv Detail & Related papers (2021-12-02T07:55:25Z) - Developing Medical AI : a cloud-native audio-visual data collection
study [0.0]
This paper describes a protocol for audio-visual data collection study, a cloud-architecture for efficiently processing and consuming such data, and the design of a specific data collection device.
The goal of this paper is to improve early identification of deteriorating patients in the hospital.
arXiv Detail & Related papers (2021-08-17T18:01:12Z) - AutoCogniSys: IoT Assisted Context-Aware Automatic Cognitive Health
Assessment [2.7998963147546148]
AutoCogniSys is a context-aware automated cognitive health assessment system.
We develop an automatic cognitive health assessment system in a natural older adults living environment.
The performance of AutoCogniSys attests max. 93% of accuracy in assessing cognitive health of older adults.
arXiv Detail & Related papers (2020-03-17T01:44:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.