Strategies for practical advantage of fault-tolerant circuit design in
noisy trapped-ion quantum computers
- URL: http://arxiv.org/abs/2301.10017v1
- Date: Tue, 24 Jan 2023 14:01:48 GMT
- Title: Strategies for practical advantage of fault-tolerant circuit design in
noisy trapped-ion quantum computers
- Authors: Sascha Heu{\ss}en, Lukas Postler, Manuel Rispler, Ivan Pogorelov,
Christian D. Marciniak, Thomas Monz, Philipp Schindler and Markus M\"uller
- Abstract summary: We describe the recent demonstration of a fault-tolerant universal gate set in a trapped-ion quantum computer.
We show that various criteria to assess the break-even point for fault-tolerant quantum operations are within reach for the ion trap quantum computing architecture.
- Score: 1.3974342259149322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault-tolerant quantum error correction provides a strategy to protect
information processed by a quantum computer against noise which would otherwise
corrupt the data. A fault-tolerant universal quantum computer must implement a
universal gate set on the logical level in order to perform arbitrary
calculations to in principle unlimited precision. We characterize the recent
demonstration of a fault-tolerant universal gate set in a trapped-ion quantum
computer [Postler et al. Nature 605.7911 (2022)] and identify aspects to
improve the design of experimental setups to reach an advantage of logical over
physical qubit operation. We show that various criteria to assess the
break-even point for fault-tolerant quantum operations are within reach for the
ion trap quantum computing architecture under consideration. We analyze the
influence of crosstalk in entangling gates for logical state preparation
circuits. These circuits can be designed to respect fault tolerance for
specific microscopic noise models. We find that an experimentally-informed
depolarizing noise model captures the essential noise dynamics of the
fault-tolerant experiment, and crosstalk is negligible in the currently
accessible regime of physical error rates. For deterministic Pauli state
preparation, we provide a fault-tolerant unitary logical qubit initialization
circuit, which can be realized without in-sequence measurement and feed-forward
of classical information. We show that non-deterministic state preparation
schemes for logical Pauli and magic states perform with higher logical fidelity
over their deterministic counterparts for the current and anticipated future
regime of physical error rates. Our results offer guidance on improvements of
physical qubit operations and validate the experimentally-informed noise model
as a tool to predict logical failure rates in quantum computing architectures
based on trapped ions.
Related papers
- Benchmarking Single-Qubit Gates on a Noise-Biased Qubit Beyond the Fault-Tolerant Threshold [1.4812736095876513]
Noise in quantum system hinders the advancement of quantum information processing.
One of the most promising platforms to achieve fault-tolerance is qubits with structured noise.
arXiv Detail & Related papers (2024-11-07T05:34:18Z) - Learning logical Pauli noise in quantum error correction [0.7264378254137809]
We focus on the characterization of quantum computers in the context of stabilizer quantum error correction.
For arbitrary stabilizer codes, subsystem codes, and data syndrome codes, we prove that the logical error channel induced by Pauli noise can be estimated from syndrome data under minimal conditions.
arXiv Detail & Related papers (2022-09-19T18:00:06Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment.
Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct output of logical qubits under the presence of errors.
Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol.
arXiv Detail & Related papers (2020-12-16T13:23:29Z) - Relaxation times do not capture logical qubit dynamics [50.04886706729045]
We show that spatial noise correlations can give rise to rich and counter-intuitive dynamical behavior of logical qubits.
This work will help to guide and benchmark experimental implementations of logical qubits.
arXiv Detail & Related papers (2020-12-14T19:51:19Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.