Demonstrating quantum error mitigation on logical qubits
- URL: http://arxiv.org/abs/2501.09079v1
- Date: Wed, 15 Jan 2025 19:00:33 GMT
- Title: Demonstrating quantum error mitigation on logical qubits
- Authors: Aosai Zhang, Haipeng Xie, Yu Gao, Jia-Nan Yang, Zehang Bao, Zitian Zhu, Jiachen Chen, Ning Wang, Chuanyu Zhang, Jiarun Zhong, Shibo Xu, Ke Wang, Yaozu Wu, Feitong Jin, Xuhao Zhu, Yiren Zou, Ziqi Tan, Zhengyi Cui, Fanhao Shen, Tingting Li, Yihang Han, Yiyang He, Gongyu Liu, Jiayuan Shen, Han Wang, Yanzhe Wang, Hang Dong, Jinfeng Deng, Hekang Li, Zhen Wang, Chao Song, Qiujiang Guo, Pengfei Zhang, Ying Li, H. Wang,
- Abstract summary: A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits.
We propose and experimentally demonstrate the application of zero-noise extrapolation, a practical quantum error mitigation technique.
- Score: 18.42082909094174
- License:
- Abstract: A long-standing challenge in quantum computing is developing technologies to overcome the inevitable noise in qubits. To enable meaningful applications in the early stages of fault-tolerant quantum computing, devising methods to suppress post-correction logical failures is becoming increasingly crucial. In this work, we propose and experimentally demonstrate the application of zero-noise extrapolation, a practical quantum error mitigation technique, to error correction circuits on state-of-the-art superconducting processors. By amplifying the noise on physical qubits, the circuits yield outcomes that exhibit a predictable dependence on noise strength, following a polynomial function determined by the code distance. This property enables the effective application of polynomial extrapolation to mitigate logical errors. Our experiments demonstrate a universal reduction in logical errors across various quantum circuits, including fault-tolerant circuits of repetition and surface codes. We observe a favorable performance in multi-round error correction circuits, indicating that this method remains effective when the circuit depth increases. These results advance the frontier of quantum error suppression technologies, opening a practical way to achieve reliable quantum computing in the early fault-tolerant era.
Related papers
- Readout Error Mitigation for Mid-Circuit Measurements and Feedforward [0.0]
Current quantum computing platforms suffer from readout errors, where faulty measurement outcomes are reported by the device.
We propose a general protocol for mitigating mid-circuit measurement errors in the presence of feedforward.
Our method demonstrates up to a $sim 60%$ reduction in error on superconducting quantum processors.
arXiv Detail & Related papers (2024-06-11T18:00:01Z) - Mitigating Quantum Gate Errors for Variational Eigensolvers Using Hardware-Inspired Zero-Noise Extrapolation [0.0]
We develop a recipe for mitigating quantum gate errors for variational algorithms using zero-noise extrapolation.
We utilize the fact that gate errors in a physical quantum device are distributed inhomogeneously over different qubits and qubit pairs.
We find that the estimated energy in the variational approach is approximately linear with respect to the circuit error sum.
arXiv Detail & Related papers (2023-07-20T18:00:03Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum readout error mitigation via deep learning [2.4936576553283283]
We present a deep learning-based protocol for reducing readout errors on quantum hardware.
With the neural network and deep learning, non-linear noise can be corrected, which is not possible with the existing linear inversion methods.
arXiv Detail & Related papers (2021-12-07T09:26:57Z) - Mitigating errors by quantum verification and post-selection [0.0]
We present a technique for quantum error mitigation based on quantum verification, the so-called accreditation protocol, together with post-selection.
We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise.
Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol.
arXiv Detail & Related papers (2021-09-29T10:29:39Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.