Intensity interferometry for holography with quantum and classical light
- URL: http://arxiv.org/abs/2301.10068v2
- Date: Thu, 25 May 2023 20:39:25 GMT
- Title: Intensity interferometry for holography with quantum and classical light
- Authors: G.S. Thekkadath, D. England, F. Bouchard, Y. Zhang, M.S. Kim, B.
Sussman
- Abstract summary: We combine a signal beam with a reference and measure their intensity cross-correlations using a time-tagging single-photon camera.
These correlations reveal an interference pattern from which we reconstruct the signal wavefront in both intensity and phase.
Since the signal and reference do not need to be phase-stable, this technique can be used to generate holograms of self-luminous or remote objects.
- Score: 0.415623340386296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As first demonstrated by Hanbury Brown and Twiss, it is possible to observe
interference between independent light sources by measuring correlations in
their intensities rather than their amplitudes. In this work, we apply this
concept of intensity interferometry to holography. We combine a signal beam
with a reference and measure their intensity cross-correlations using a
time-tagging single-photon camera. These correlations reveal an interference
pattern from which we reconstruct the signal wavefront in both intensity and
phase. We demonstrate the principle with classical and quantum light, including
a single photon. Since the signal and reference do not need to be phase-stable,
this technique can be used to generate holograms of self-luminous or remote
objects using a local reference, thus opening the door to new holography
applications.
Related papers
- Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
arXiv Detail & Related papers (2024-01-31T13:52:37Z) - A Quantum Theory of Temporally Mismatched Homodyne Measurements with Applications to Optical Frequency Comb Metrology [39.58317527488534]
We derive measurement operators for homodyne detection with arbitrary mode overlap.
These operators establish a foundation to extend frequency-comb interferometry to a wide range of scenarios.
arXiv Detail & Related papers (2023-10-05T22:49:50Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum imaging exploiting twisted photon pairs [6.939768185086755]
We propose a quantum imaging scheme exploiting twisted photon pairs with tunable spatial-correlation regions.
Our work could pave a way for twisted-photon-based quantum holography and quantum microscopy.
arXiv Detail & Related papers (2022-06-13T03:16:59Z) - Phase retrieval enhanced by quantum correlation [0.0]
We propose a technique which exploits entanglement to enhance quantitative phase retrieval of an object in a non-interferometric setting.
This protocol can find application in optical microscopy and X-ray imaging, reducing the photon dose necessary to achieve a fixed signal-to-noise ratio.
arXiv Detail & Related papers (2021-09-21T10:58:48Z) - Mirror-assisted backscattering interferometry to measure the first-order
correlation function of the light emitted by quantum scatterers [0.0]
We present a new method to obtain the first-order temporal correlation function, $g(1) (tau)$, of the light scattered by an assembly of point-like quantum scatterers.
This new method has direct application to obtain the saturated spectrum of quantum systems.
arXiv Detail & Related papers (2021-08-03T12:34:41Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z) - Frequency-resolved photon correlations in cavity optomechanics [58.720142291102135]
We analyze the frequency-resolved correlations of the photons being emitted from an optomechanical system.
We discuss how the time-delayed correlations can reveal information about the dynamics of the system.
This enriched understanding of the system can trigger new experiments to probe nonlinear phenomena in optomechanics.
arXiv Detail & Related papers (2020-09-14T06:17:36Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Observing coherences with time-resolved photoemission [77.34726150561087]
We discuss the potential creation and measurement of coherences in both dispersive solids and qubit-like single levels using current generation time- and angle-resolved photoemission technology.
We show that in both cases, when both the pump and the probe overlap energetically with the coherent levels, that the time-resolved photoemission signal shows a beating pattern at the energy difference between the levels.
In the case of dispersive bands, this leads to momentum-dependent oscillations, which may be used to map out small energy scales in the band structure.
arXiv Detail & Related papers (2020-05-18T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.