論文の概要: Improving Open-Set Semi-Supervised Learning with Self-Supervision
- arxiv url: http://arxiv.org/abs/2301.10127v1
- Date: Tue, 24 Jan 2023 16:46:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 13:09:31.256476
- Title: Improving Open-Set Semi-Supervised Learning with Self-Supervision
- Title(参考訳): 自己スーパービジョンによるオープンセットセミスーパービジョン学習の改善
- Authors: Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
- Abstract要約: Open-set semi-supervised learning (OSSL)は、ラベル付きセットに存在しないクラスを含む、半教師付き学習の現実的な設定である。
我々は,自己スーパービジョンを通じて,ラベルのないすべてのデータから学習を容易にするOSSLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 16.757456364034798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-set semi-supervised learning (OSSL) is a realistic setting of
semi-supervised learning where the unlabeled training set contains classes that
are not present in the labeled set. Many existing OSSL methods assume that
these out-of-distribution data are harmful and put effort into excluding data
from unknown classes from the training objective. In contrast, we propose an
OSSL framework that facilitates learning from all unlabeled data through
self-supervision. Additionally, we utilize an energy-based score to accurately
recognize data belonging to the known classes, making our method well-suited
for handling uncurated data in deployment. We show through extensive
experimental evaluations on several datasets that our method shows overall
unmatched robustness and performance in terms of closed-set accuracy and
open-set recognition compared with state-of-the-art for OSSL. Our code will be
released upon publication.
- Abstract(参考訳): Open-set semi-supervised learning (OSSL)は、ラベル付き集合に存在しないクラスを含む半教師付き学習の現実的な設定である。
既存のOSSLメソッドの多くは、これらのアウト・オブ・ディストリビューションデータは有害であると仮定し、トレーニング目標から未知のクラスからデータを除外する努力を払っている。
対照的に,自己スーパービジョンによるラベルなしデータからの学習を容易にするosslフレームワークを提案する。
さらに,エネルギベースのスコアを用いて既知のクラスに属するデータを正確に認識し,デプロイ時の未処理データの処理に適していることを示す。
提案手法は,OSSLの最先端技術と比較して,クローズドセットの精度とオープンセットの認識の観点から,不整合性や性能を総合的に示すものである。
私たちのコードは出版時に公開される。
関連論文リスト
- OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning [4.462726364160216]
半教師付き学習(SSL)は、注釈のないデータの可能性を活用するための堅牢なフレームワークを提供する。
オープンワールドSSL(OwSSL)の出現は、ラベルのないデータが目に見えないクラスのサンプルを包含する、より実践的な課題をもたらす。
我々は,条件付き自己ラベルとオープンワールド階層しきい値を組み合わせたOwMatchという効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-04T06:07:43Z) - Robust Semi-supervised Learning by Wisely Leveraging Open-set Data [48.67897991121204]
Open-set Semi-supervised Learning (OSSL)は、ラベル付けされていないデータはラベル付けされていないクラスから来る可能性がある、という現実的な設定を持っている。
Wese Open-set Semi-supervised Learning (WiseOpen) は、モデルのトレーニングにオープンセットデータを選択的に活用する汎用OSSLフレームワークである。
論文 参考訳(メタデータ) (2024-05-11T10:22:32Z) - Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario [14.916971861796384]
Semi-Supervised Learning (SSL)は、ラベル付きデータとラベルなしデータの両方を利用して、モデルのパフォーマンスを向上させるフレームワークである。
既存のSSLメソッドを拡張し、特定のクラスが欠落している状況に対処するための一般的なアプローチを提案する。
実験の結果,最先端のSSL,オープンセットのSSL,オープンワールドのSSLメソッドと比較して,精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-08-27T14:25:07Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
オープンセット半教師付き学習(Open-set SSL)は、ラベル付きデータ(inliers)で観測されない新しいカテゴリ(outliers)を含むラベル付きデータとテストデータを含む、より実践的なシナリオである。
本研究では,様々な不確かさを定量化するための外乱検出器として顕在的深層学習(EDL)を導入し,自己学習と推論のための異なる不確実性指標を設計する。
Inlierとoutlierの両方を含むラベルなしデータセットに適合するように、新しい適応的負の最適化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-21T09:07:15Z) - Towards Realistic Semi-Supervised Learning [73.59557447798134]
オープンワールド環境でSSLに取り組み、未知のクラスと未知のクラスを同時に分類する新しい手法を提案する。
我々のアプローチは、既存の最先端の7つのデータセットよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-07-05T19:04:43Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
半教師付き学習(SSL)は、教師付き学習のアノテーションボトルネックに対処する主要なアプローチの1つである。
最近のSSLメソッドは、ラベルなしデータの大規模なリポジトリを有効活用して、ラベル付きデータの小さなセットに依存しながら、パフォーマンスを向上させることができる。
この研究は、ペアワイズ類似度損失を利用して新しいクラスを発見するOpenLDNを導入している。
論文 参考訳(メタデータ) (2022-07-05T18:51:05Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
我々はOpenMatchと呼ばれる新しいオープンセットセミスーパーバイザードラーニング(OSSL)アプローチを提案する。
OpenMatchは、1-vs-all(OVA)分類器に基づいた新規検出とFixMatchを統合する。
3つのデータセットで最先端のパフォーマンスを実現し、CIFAR10の未ラベルデータで見えないアウトリーチを検出する上で、完全な教師付きモデルよりも優れています。
論文 参考訳(メタデータ) (2021-05-28T23:57:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。