論文の概要: OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2411.01833v1
- Date: Mon, 04 Nov 2024 06:07:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:51:15.730177
- Title: OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning
- Title(参考訳): OwMatch: オープンワールドセミスーパービジョンラーニングのためのコンディショナルセルフラベル
- Authors: Shengjie Niu, Lifan Lin, Jian Huang, Chao Wang,
- Abstract要約: 半教師付き学習(SSL)は、注釈のないデータの可能性を活用するための堅牢なフレームワークを提供する。
オープンワールドSSL(OwSSL)の出現は、ラベルのないデータが目に見えないクラスのサンプルを包含する、より実践的な課題をもたらす。
我々は,条件付き自己ラベルとオープンワールド階層しきい値を組み合わせたOwMatchという効果的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.462726364160216
- License:
- Abstract: Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data. Traditionally, SSL mandates that all classes possess labeled instances. However, the emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes. This scenario leads to misclassification of unseen classes as known ones, consequently undermining classification accuracy. To overcome this challenge, this study revisits two methodologies from self-supervised and semi-supervised learning, self-labeling and consistency, tailoring them to address the OwSSL problem. Specifically, we propose an effective framework called OwMatch, combining conditional self-labeling and open-world hierarchical thresholding. Theoretically, we analyze the estimation of class distribution on unlabeled data through rigorous statistical analysis, thus demonstrating that OwMatch can ensure the unbiasedness of the self-label assignment estimator with reliability. Comprehensive empirical analyses demonstrate that our method yields substantial performance enhancements across both known and unknown classes in comparison to previous studies. Code is available at https://github.com/niusj03/OwMatch.
- Abstract(参考訳): 半教師付き学習(SSL)は、注釈のないデータの可能性を活用するための堅牢なフレームワークを提供する。
SSLは伝統的に、すべてのクラスがラベル付きインスタンスを持っていることを義務付けている。
しかし、オープンワールドSSL(OwSSL)の出現により、ラベルのないデータが目に見えないクラスのサンプルを包含する、より実践的な課題がもたらされる。
このシナリオは未知のクラスを既知のクラスとして誤分類し、結果として分類精度を損なう。
この課題を克服するために,本研究では,OwSSL問題に対処するために,自己教師型および半教師型学習,自己ラベル化,一貫性の2つの方法論を再検討する。
具体的には、条件付き自己ラベルとオープンワールド階層しきい値を組み合わせたOwMatchという効果的なフレームワークを提案する。
理論的には、厳密な統計分析により、未ラベルデータのクラス分布の推定を解析し、OwMatchが信頼性の高い自己ラベル割り当て推定器の非バイアス性を確保することを実証する。
包括的実証分析により,本手法は,従来の研究と比較して,未知クラスと未知クラスの両方において,大幅な性能向上をもたらすことが示された。
コードはhttps://github.com/niusj03/OwMatch.comで入手できる。
関連論文リスト
- AllMatch: Exploiting All Unlabeled Data for Semi-Supervised Learning [5.0823084858349485]
提案するSSLアルゴリズムであるAllMatchは,擬似ラベル精度の向上とラベルなしデータの100%利用率の向上を実現する。
その結果、AllMatchは既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-06-22T06:59:52Z) - Robust Semi-Supervised Learning for Self-learning Open-World Classes [5.714673612282175]
実世界のアプリケーションでは、ラベル付きデータは常にラベル付き集合に存在しないクラスを含んでいる。
本稿では,自己学習型オープンワールドクラス(SSOC)のためのオープンワールドSSL手法を提案する。
SSOCは、複数の人気のある分類ベンチマークで最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-01-15T09:27:46Z) - InstanT: Semi-supervised Learning with Instance-dependent Thresholds [75.91684890150283]
本稿では,既存手法と比較して高い自由度を有するインスタンス依存しきい値の研究を提案する。
インスタンスレベルのあいまいさと擬似ラベルのインスタンス依存エラー率を利用して、すべての未ラベルインスタンスに対して新しいインスタンス依存しきい値関数を考案する。
論文 参考訳(メタデータ) (2023-10-29T05:31:43Z) - Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario [14.916971861796384]
Semi-Supervised Learning (SSL)は、ラベル付きデータとラベルなしデータの両方を利用して、モデルのパフォーマンスを向上させるフレームワークである。
既存のSSLメソッドを拡張し、特定のクラスが欠落している状況に対処するための一般的なアプローチを提案する。
実験の結果,最先端のSSL,オープンセットのSSL,オープンワールドのSSLメソッドと比較して,精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-08-27T14:25:07Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
そこで本研究では,アレータ性およびてんかん性不確実性定量化に依存する,教師なし不確実性認識の新たな目的を提案する。
CIFAR-100やMini-ImageNetのような複雑なデータセットでは,結果が最先端の成果よりも優れています。
論文 参考訳(メタデータ) (2022-07-22T00:15:02Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
半教師付き学習(SSL)は、教師付き学習のアノテーションボトルネックに対処する主要なアプローチの1つである。
最近のSSLメソッドは、ラベルなしデータの大規模なリポジトリを有効活用して、ラベル付きデータの小さなセットに依存しながら、パフォーマンスを向上させることができる。
この研究は、ペアワイズ類似度損失を利用して新しいクラスを発見するOpenLDNを導入している。
論文 参考訳(メタデータ) (2022-07-05T18:51:05Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
データセット不均衡下での自己教師型学習について検討する。
既製の自己教師型表現は、教師型表現よりもクラス不均衡に対してすでに堅牢である。
我々は、不均衡なデータセット上でSSL表現品質を一貫して改善する、再重み付け正規化手法を考案した。
論文 参考訳(メタデータ) (2021-10-11T06:29:56Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
我々はOpenMatchと呼ばれる新しいオープンセットセミスーパーバイザードラーニング(OSSL)アプローチを提案する。
OpenMatchは、1-vs-all(OVA)分類器に基づいた新規検出とFixMatchを統合する。
3つのデータセットで最先端のパフォーマンスを実現し、CIFAR10の未ラベルデータで見えないアウトリーチを検出する上で、完全な教師付きモデルよりも優れています。
論文 参考訳(メタデータ) (2021-05-28T23:57:15Z) - Distribution Aligning Refinery of Pseudo-label for Imbalanced
Semi-supervised Learning [126.31716228319902]
Pseudo-label (DARP) アルゴリズムの分散アライメント・リファナリーを開発する。
DARPは最先端のSSLスキームと有効かつ効率的に互換性があることを示す。
論文 参考訳(メタデータ) (2020-07-17T09:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。