ETHNO-DAANN: Ethnographic Engagement Classification by Deep Adversarial Transfer Learning
- URL: http://arxiv.org/abs/2301.10229v2
- Date: Tue, 19 Mar 2024 16:09:04 GMT
- Title: ETHNO-DAANN: Ethnographic Engagement Classification by Deep Adversarial Transfer Learning
- Authors: Rossi Kamal, Zuzana Kubincova, Mosaddek Hossain Kamal, Upama Kabir,
- Abstract summary: Student motivation is a key research agenda due to the necessity of both postcolonial education reform and youth job-market adaptation.
We propose a deep neural network based transfer learning algorithm ETHNO-DAANN with adversarial adaptation for ethnographic engagement prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Student motivation is a key research agenda due to the necessity of both postcolonial education reform and youth job-market adaptation in ongoing fourth industrial revolution. Post-communism era teachers are prompted to analyze student ethnicity information such as background, origin with the aim of providing better education. With the proliferation of smart-device data, ever-increasing demand for distance learning platforms and various survey results of virtual learning, we are fortunate to have some access to student engagement data. In this research, we are motivated to address the following questions: can we predict student engagement from ethnographic information when we have limited labeled knowledge? If the answer is yes, can we tell which features are most influential in ethnographic engagement learning? In this context, we have proposed a deep neural network based transfer learning algorithm ETHNO-DAANN with adversarial adaptation for ethnographic engagement prediction. We conduct a survey among participants about ethnicity-based student motivation to figure out the most influential feature helpful in final prediction. Thus, our research stands as a general solution for ethnographic motivation parameter estimation in case of limited labeled data.
Related papers
- Navigating the Landscape of Hint Generation Research: From the Past to the Future [34.47999708205151]
We present a review of prior research on hint generation, aiming to bridge the gap between research in education and cognitive science.
We propose a formal definition of the hint generation task, and discuss the roadmap of building an effective hint generation system.
arXiv Detail & Related papers (2024-04-06T20:42:46Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - Enhancing Student Performance Prediction on Learnersourced Questions
with SGNN-LLM Synergy [11.735587384038753]
We introduce an innovative strategy that synergizes the potential of integrating Signed Graph Neural Networks (SGNNs) and Large Language Model (LLM) embeddings.
Our methodology employs a signed bipartite graph to comprehensively model student answers, complemented by a contrastive learning framework that enhances noise resilience.
arXiv Detail & Related papers (2023-09-23T23:37:55Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - A Survey of Graph Unlearning [11.841882902141696]
Graph unlearning provides the means to remove sensitive data traces from trained models, thereby upholding the right to be forgotten.
We present the first systematic review of graph unlearning approaches, encompassing a diverse array of methodologies.
We explore the versatility of graph unlearning across various domains, including but not limited to social networks, adversarial settings, and resource-constrained environments.
arXiv Detail & Related papers (2023-08-23T20:50:52Z) - A framework for the emergence and analysis of language in social
learning agents [0.0]
This study proposes a communication protocol between cooperative agents to analyze the formation of individual and shared abstractions.
Using grid-world mazes and reinforcement learning, teacher ANNs pass a compressed message to a student ANN for better task completion.
This highlights the role of language as a common representation between agents and its implications on generalization capabilities.
arXiv Detail & Related papers (2023-05-04T08:11:01Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Graph-based Exercise- and Knowledge-Aware Learning Network for Student
Performance Prediction [8.21303828329009]
We propose a Graph-based Exercise- and Knowledge-Aware Learning Network for accurate student score prediction.
We learn students' mastery of exercises and knowledge concepts respectively to model the two-fold effects of exercises and knowledge concepts.
arXiv Detail & Related papers (2021-06-01T06:53:17Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.