Navigating the Landscape of Hint Generation Research: From the Past to the Future
- URL: http://arxiv.org/abs/2404.04728v1
- Date: Sat, 6 Apr 2024 20:42:46 GMT
- Title: Navigating the Landscape of Hint Generation Research: From the Past to the Future
- Authors: Anubhav Jangra, Jamshid Mozafari, Adam Jatowt, Smaranda Muresan,
- Abstract summary: We present a review of prior research on hint generation, aiming to bridge the gap between research in education and cognitive science.
We propose a formal definition of the hint generation task, and discuss the roadmap of building an effective hint generation system.
- Score: 34.47999708205151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital education has gained popularity in the last decade, especially after the COVID-19 pandemic. With the improving capabilities of large language models to reason and communicate with users, envisioning intelligent tutoring systems (ITSs) that can facilitate self-learning is not very far-fetched. One integral component to fulfill this vision is the ability to give accurate and effective feedback via hints to scaffold the learning process. In this survey article, we present a comprehensive review of prior research on hint generation, aiming to bridge the gap between research in education and cognitive science, and research in AI and Natural Language Processing. Informed by our findings, we propose a formal definition of the hint generation task, and discuss the roadmap of building an effective hint generation system aligned with the formal definition, including open challenges, future directions and ethical considerations.
Related papers
- Explainable Few-shot Knowledge Tracing [48.877979333221326]
We propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations.
Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods.
arXiv Detail & Related papers (2024-05-23T10:07:21Z) - Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub' [0.6990493129893112]
This research aims to introduce an innovative study buddy we will be calling the 'SAMCares'
The system leverages a Large Language Model (LLM) and Retriever-Augmented Generation (RAG) to offer real-time, context-aware, and adaptive educational support.
arXiv Detail & Related papers (2024-05-01T05:39:07Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - On the application of Large Language Models for language teaching and
assessment technology [18.735612275207853]
We look at the potential for incorporating large language models in AI-driven language teaching and assessment systems.
We find that larger language models offer improvements over previous models in text generation.
For automated grading and grammatical error correction, tasks whose progress is checked on well-known benchmarks, early investigations indicate that large language models on their own do not improve on state-of-the-art results.
arXiv Detail & Related papers (2023-07-17T11:12:56Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Practical and Ethical Challenges of Large Language Models in Education:
A Systematic Scoping Review [5.329514340780243]
Large language models (LLMs) have the potential to automate the laborious process of generating and analysing textual content.
There are concerns regarding the practicality and ethicality of these innovations.
We conducted a systematic scoping review of 118 peer-reviewed papers published since 2017 to pinpoint the current state of research.
arXiv Detail & Related papers (2023-03-17T18:14:46Z) - ETHNO-DAANN: Ethnographic Engagement Classification by Deep Adversarial Transfer Learning [0.0]
Student motivation is a key research agenda due to the necessity of both postcolonial education reform and youth job-market adaptation.
We propose a deep neural network based transfer learning algorithm ETHNO-DAANN with adversarial adaptation for ethnographic engagement prediction.
arXiv Detail & Related papers (2023-01-21T22:07:26Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
knowledge-augmented deep learning (KADL) aims to identify domain knowledge and integrate it into deep models for data-efficient, generalizable, and interpretable deep learning.
This survey subsumes existing works and offers a bird's-eye view of research in the general area of knowledge-augmented deep learning.
arXiv Detail & Related papers (2022-11-30T03:44:15Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.