How Does Nature Accomplish Spooky Action at a Distance?
- URL: http://arxiv.org/abs/2301.10240v1
- Date: Wed, 4 Jan 2023 15:11:44 GMT
- Title: How Does Nature Accomplish Spooky Action at a Distance?
- Authors: Mani L. Bhaumik
- Abstract summary: Quantum entanglement and nonlocal correlations emerged as inevitable consequences of John Bell's paper on Bell's inequality.
A cogent mechanism for the occurrence of this incredible event is presented in terms of a plausible quantum mechanical Einstein-Rosen bridge.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enigmatic nonlocal quantum correlation that was famously derided by
Einstein as "spooky action at a distance" has now been experimentally
demonstrated to be authentic. The quantum entanglement and nonlocal
correlations emerged as inevitable consequences of John Bell's epochal paper on
Bell's inequality. However, in spite of some extraordinary applications as well
as attempts to explain the reason for quantum nonlocality, a satisfactory
account of how Nature accomplishes this astounding phenomenon is yet to emerge.
A cogent mechanism for the occurrence of this incredible event is presented in
terms of a plausible quantum mechanical Einstein-Rosen bridge.
Related papers
- Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Locality in the Schroedinger Picture of Quantum Mechanics [0.0]
We explain how the so-called Einstein locality is to be understood in the Schr"odinger picture of quantum mechanics.
Contrary to some beliefs that quantum mechanics is incomplete, it is, in fact, its overcompleteness as exemplified by different pictures of quantum physics, that points to the same underlying reality.
arXiv Detail & Related papers (2023-12-07T21:16:39Z) - Einstein locality [3.908324677409939]
Nonlocality is a fundamental aspect of quantum mechanics and an important resource in quantum information science.
I report on the discovery of Einstein locality that clarifies an essential confusion between Bell nonlocality and Einstein nonlocality.
arXiv Detail & Related papers (2023-11-06T07:20:09Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Comment on "Why interference phenomena do not capture the essence of quantum theory" [0.0]
Catani et al argue that it is possible to reproduce the phenomenology of quantum interference classically.
We here want to point out some problems with their argument.
arXiv Detail & Related papers (2022-04-04T18:03:52Z) - Impossibility of creating a superposition of unknown quantum states [16.467540842571328]
We show that the existence of a protocol that superposes two unknown pure states with nonzero probability leads to violation of other no-go theorems.
Such a protocol can be used to perform certain state discrimination and cloning tasks that are forbidden in quantum theory.
arXiv Detail & Related papers (2020-11-04T13:25:42Z) - Bell Nonlocality and the Reality of Quantum Wavefunction [0.0]
Status of quantum wavefunction is one of the most debated issues in quantum foundations.
We show that the observed phenomenon of quantum nonlocality cannot be incorporated in a class of $psi$-epistemic models.
arXiv Detail & Related papers (2020-05-18T10:46:09Z) - Quantum postulate vs. quantum nonlocality: Is Devil in h? [0.0]
Bell's model with hidden variables is that it straightforwardly contradicts to the Heinsenberg's uncertainty and generally Bohr's complementarity principles.
Bell's approach with hidden variable straightforwardly implies rejection of the quantum postulate.
arXiv Detail & Related papers (2020-03-12T11:59:14Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Dynamically encircling an exceptional point in a real quantum system [13.510562179346167]
The exceptional point, known as the non-Hermitian degeneracy, has special topological structure.
Here we experimentally demonstrate dynamically encircling the exceptional point with a single nitrogen-vacancy center in diamond.
Our work reveals the topological structure of the exceptional point and paves the way to comprehensively explore the exotic properties of non-Hermitian Hamiltonians in the quantum regime.
arXiv Detail & Related papers (2020-02-17T06:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.