Impossibility of creating a superposition of unknown quantum states
- URL: http://arxiv.org/abs/2011.02275v2
- Date: Tue, 24 Nov 2020 07:13:00 GMT
- Title: Impossibility of creating a superposition of unknown quantum states
- Authors: Somshubhro Bandyopadhyay
- Abstract summary: We show that the existence of a protocol that superposes two unknown pure states with nonzero probability leads to violation of other no-go theorems.
Such a protocol can be used to perform certain state discrimination and cloning tasks that are forbidden in quantum theory.
- Score: 16.467540842571328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The superposition principle is fundamental to quantum theory. Yet a recent
no-go theorem has proved that quantum theory forbids superposition of unknown
quantum states, even with nonzero probability. The implications of this result,
however, remain poorly understood so far. In this paper we show that the
existence of a protocol that superposes two unknown pure states with nonzero
probability (allowed to vary over input states) leads to violation of other
no-go theorems. In particular, such a protocol can be used to perform certain
state discrimination and cloning tasks that are forbidden not only in quantum
theory but in no-signaling theories as well.
Related papers
- How quantum mechanics requires non-additive measures [0.0]
Measure theory is used in physics, not just to capture classical probability, but also to quantify the number of states.
We construct the quantum equivalent of the Liouville measure, which is non-additive and has a unitary lower bound.
We show these preliminary results and outline a new line of inquiry that may provide a different insight into the foundations of quantum theory.
arXiv Detail & Related papers (2023-11-03T14:46:55Z) - A Quantum Theory with Non-collapsing Measurements [0.0]
A collapse-free version of quantum theory is introduced to study the role of the projection postulate.
We assume "passive" measurements that do not update quantum states while measurement outcomes still occur probabilistically.
The resulting quantum-like theory has only one type of dynamics, namely unitary evolution.
arXiv Detail & Related papers (2023-03-23T16:32:29Z) - A simple formulation of no-cloning and no-hiding that admits efficient
and robust verification [0.0]
Incompatibility is a feature of quantum theory that sets it apart from classical theory.
The no-hiding theorem is another such instance that arises in the context of the black-hole information paradox.
We formulate both of these fundamental features of quantum theory in a single form that is amenable to efficient verification.
arXiv Detail & Related papers (2023-03-05T12:48:11Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - On the Interpretation of Quantum Indistinguishability : a No-Go Theorem [0.0]
Physicists are yet to reach a consensus on the interpretation of a quantum wavefunction.
We show that quantum mechanical prediction of maximal violation of Mermin inequality is incompatible with all ontological interpretations for quantum theory.
arXiv Detail & Related papers (2022-04-20T18:39:25Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Testing quantum theory by generalizing noncontextuality [0.0]
We prove that only Jordan-algebraic state spaces are exactly embeddable into quantum theory.
We propose an experimental test of quantum theory by probing single physical systems.
arXiv Detail & Related papers (2021-12-17T19:00:24Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.