Improved composable key rates for CV-QKD
- URL: http://arxiv.org/abs/2301.10270v3
- Date: Tue, 7 May 2024 08:48:48 GMT
- Title: Improved composable key rates for CV-QKD
- Authors: Stefano Pirandola, Panagiotis Papanastasiou,
- Abstract summary: In this paper, we refine and advance the previous theory in this area.
We provide a more rigorous formulation for the composable key rate of a generic CV-QKD protocol.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern security proofs of quantum key distribution (QKD) must take finite-size effects and composable aspects into consideration. This is also the case for continuous-variable (CV) protocols which are based on the transmission and detection of bosonic coherent states. In this paper, we refine and advance the previous theory in this area providing a more rigorous formulation for the composable key rate of a generic CV-QKD protocol. Thanks to these theoretical refinements, our general formulas allow us to prove more optimistic key rates with respect to previous literature.
Related papers
- Quantize What Counts: Bit Allocation Insights Informed by Spectral Gaps in Keys and Values [57.54443445583921]
We provide two novel theorems aimed at enhancing KV quantization methods.<n>Our first theorem, termed Key-Value Norm Disparity, states that the key weight matrices by nature carry richer information.<n>Our second theorem, Key-Driven Quantization, posits that prioritizing the quantization precision of keys over values induces significant improvements to the overall quantization performance.
arXiv Detail & Related papers (2025-02-20T22:24:27Z) - High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality [105.73011353120471]
Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security.
Due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools is challenging.
This paper introduces a QKD communication system design tool.
arXiv Detail & Related papers (2025-01-21T11:03:59Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems [69.47813697920358]
We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
arXiv Detail & Related papers (2024-08-28T12:51:03Z) - Improved finite-size key rates for discrete-modulated continuous variable quantum key distribution under coherent attacks [0.0]
We consider a prepare-and-measure CVQKD protocol, where Alice chooses from a set of four coherent states and Bob performs a heterodyne measurement.
We provide a security proof against coherent attacks in the finite-size regime, and compute the achievable key rate.
arXiv Detail & Related papers (2024-07-03T13:18:31Z) - Enhancing key rates of QKD protocol by Coincidence Detection [1.529783555466765]
In theory, quantum key distribution (QKD) provides unconditional security.
However, its practical implementations are susceptible to exploitable vulnerabilities.
This investigation tackles the constraints in practical QKD implementations using weak coherent pulses.
arXiv Detail & Related papers (2024-02-29T11:23:41Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Commitment capacity of classical-quantum channels [70.51146080031752]
We define various notions of commitment capacity for classical-quantum channels.
We prove matching upper and lower bound on it in terms of the conditional entropy.
arXiv Detail & Related papers (2022-01-17T10:41:50Z) - Discrete-variable quantum key distribution with homodyne detection [14.121646217925441]
We propose a protocol that combines the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD.
Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over distances.
arXiv Detail & Related papers (2021-09-01T17:12:28Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Recent advances on quantum key distribution overcoming the linear secret
key capacity bound [0.0]
A crucial goal for quantum key distribution (QKD) is to transmit unconditionally secure keys over long distances.
In 2018, the seminal twin-field (TF) QKD protocol was proposed to provide a remarkable solution to overcoming the linear secret key capacity bound.
This article presents an up-to-date survey on recent developments in this area.
arXiv Detail & Related papers (2020-11-26T02:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.