Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems
- URL: http://arxiv.org/abs/2408.15758v1
- Date: Wed, 28 Aug 2024 12:51:03 GMT
- Title: Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems
- Authors: Ronny Müller, Claudia De Lazzari, Fernando Chirici, Ilaria Vagniluca, Leif Katsuo Oxenløwe, Søren Forchhammer, Alessandro Zavatta, Davide Bacco,
- Abstract summary: We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
- Score: 69.47813697920358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information Reconciliation is a critical component of Quantum Key Distribution, ensuring that mismatches between Alice's and Bob's keys are corrected. In this study, we analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation: Cascade and LDPC codes in combination with the Blind protocol. We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions. The results are further validated through evaluation on a live industrial QKD system.
Related papers
- Informed Dynamic Scheduling for QLDPC Codes [1.7802147489386628]
We consider edge-wise informed dynamic scheduling (IDS) for QLDPC codes based on syndrome-based residual belief propagation (sRBP)
Two strategies, including edge pool design and error pre-correction, are introduced to tackle this obstacle and quantum trapping sets.
A novel sRBP equipped with a predict-and-reduce-error mechanism (PRE-sRBP) is proposed.
arXiv Detail & Related papers (2024-10-02T03:00:15Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - Hyperparameters in Continual Learning: A Reality Check [53.30082523545212]
Continual learning (CL) aims to train a model on a sequence of tasks while balancing the trade-off between plasticity (learning new tasks) and stability (retaining prior knowledge)
The dominantly adopted conventional evaluation protocol for CL algorithms selects the best hyper parameters in a given scenario and then evaluates the algorithms in the same scenario.
This protocol has significant shortcomings: it overestimates the CL capacity of algorithms and relies on unrealistic hyper parameter tuning.
We argue that the evaluation of CL algorithms should focus on assessing the generalizability of their CL capacity to unseen scenarios.
arXiv Detail & Related papers (2024-03-14T03:13:01Z) - Efficient Information Reconciliation for High-Dimensional Quantum Key Distribution [2.4277680835263005]
We introduce two novel methods for reconciliation in high-dimensional QKD systems.
The methods are based on nonbinary LDPC codes and the Cascade algorithm, and achieve efficiencies close the the Slepian-Wolf bound on q-ary symmetric channels.
arXiv Detail & Related papers (2023-07-05T12:06:27Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Asymmetric adaptive LDPC-based information reconciliation for industrial
quantum key distribution [0.0]
We develop a new approach for asymmetric LDPC-based information reconciliation in order to adapt to the current channel state.
The new scheme combines the advantages of LDPC codes, a priori error rate estimation, rate-adaptive and blind information reconciliation techniques.
arXiv Detail & Related papers (2022-12-02T12:09:09Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - A model for optimizing quantum key distribution with continuous-wave
pumped entangled-photon sources [3.0178691659863452]
Quantum Key Distribution (QKD) allows unconditionally secure communication based on the laws of quantum mechanics.
We analyze the underlying mechanisms for QKD with temporally uniform pair-creation probabilities.
We develop a model to calculate optimal trade-offs for maximal secure key rates.
arXiv Detail & Related papers (2021-03-26T17:55:16Z) - Blind information reconciliation with polar codes for quantum key
distribution [0.0]
We suggest a new protocol for the information reconciliation stage of quantum key distribution based on polar codes.
The suggested approach is based on the blind technique, which is proved to be useful for low-density parity-check (LDPC) codes.
arXiv Detail & Related papers (2020-08-27T09:08:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.