High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality
- URL: http://arxiv.org/abs/2501.12043v1
- Date: Tue, 21 Jan 2025 11:03:59 GMT
- Title: High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality
- Authors: Aitor Brazaola-Vicario, Vasileios Kouvakis, Stylianos E. Trevlakis, Alejandra Ruiz, Alexandros-Apostolos A. Boulogeorgos, Theodoros Tsiftsis, Dusit Niyato,
- Abstract summary: Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security.
Due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools is challenging.
This paper introduces a QKD communication system design tool.
- Score: 105.73011353120471
- License:
- Abstract: Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security. Inspired by this, a great amount of research effort has been recently put on designing and testing QKD systems as well as articulating preliminary application scenarios. However, due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools, wide deployment of such systems and networks is challenging. Motivated by this, this paper introduces a QKD communication system design tool. First we articulate key operation elements of the QKD, and explain the feasibility and applicability of coherent-one-way (COW) QKD solutions. Next, we focus on documenting the corresponding simulation framework as well as defining the key performance metrics, i.e., quantum bit error rate (QBER), and secrecy key rate. To verify the accuracy of the simulation framework, we design and deploy a real-world QKD setup. We perform extensive experiments for three deployments of diverse transmission distance in the presence or absence of a QKD eavesdropper. The results reveal an acceptable match between simulations and experiments rendering the simulation framework a suitable tool for QKD communication system design.
Related papers
- Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems [69.47813697920358]
We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
arXiv Detail & Related papers (2024-08-28T12:51:03Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - Matching Game for Optimized Association in Quantum Communication
Networks [65.16483325184237]
This paper proposes a swap-stable request-QS association algorithm for quantum switches.
It achieves a near-optimal (within 5%) performance in terms of the percentage of served requests.
It is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases.
arXiv Detail & Related papers (2023-05-22T03:39:18Z) - Experimental study of secure quantum key distribution with source and
detection imperfections [4.193177700786187]
The quantum key distribution (QKD) is a promising solution for future secure information and communication technology.
This study reports a decoy-state BB84 QKD experiment that considers both source and detection imperfections.
arXiv Detail & Related papers (2022-08-08T03:31:20Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - An Efficient Routing Protocol for Quantum Key Distribution Networks [9.203625000707856]
Quantum key distribution (QKD) can provide point-to-point information-theoretic secure key services for two connected users.
QOLSR considerably improves quantum key utilization in QKD networks through link-state awareness and path optimization.
arXiv Detail & Related papers (2022-04-29T07:37:45Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - A MATLAB based modeling and simulation package for DPS-QKD [0.19036571490366497]
Quantum key distribution (QKD) is an ingenious technology utilizing quantum information science for provable secure communication.
We present a simulation framework to model optical and electrical components for implementing a QKD protocol.
arXiv Detail & Related papers (2021-07-15T13:17:38Z) - Field Test of Twin-Field Quantum Key Distribution through
Sending-or-Not-Sending over 428 km [15.390492764316264]
Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances.
Here, we demonstrate a field-test QKD over 428km deployed commercial fiber and two users are physically separated by about 300km in a straight line.
We achieve a new distance record for the field test of both TF-QKD and all types of fiber-based QKD systems.
arXiv Detail & Related papers (2021-01-01T17:35:59Z) - Adaptive Techniques in Practical Quantum Key Distribution [3.5027291542274357]
Quantum Key Distribution (QKD) can provide information-theoretically secure communications.
The performance of QKD is limited by "practical imperfections" in realistic sources, channels, and detectors.
We develop adaptive techniques with innovative protocol and algorithm design, as well as novel techniques such as machine learning.
arXiv Detail & Related papers (2020-04-23T07:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.