論文の概要: ViDeBERTa: A powerful pre-trained language model for Vietnamese
- arxiv url: http://arxiv.org/abs/2301.10439v1
- Date: Wed, 25 Jan 2023 07:26:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-26 15:47:35.998360
- Title: ViDeBERTa: A powerful pre-trained language model for Vietnamese
- Title(参考訳): ViDeBERTa:ベトナムの強力な事前訓練型言語モデル
- Authors: Cong Dao Tran, Nhut Huy Pham, Anh Nguyen, Truong Son Hy, Tu Vu
- Abstract要約: 本稿ではベトナム語のための単言語モデルViDeBERTaについて述べる。
ViDeBERTa_xsmall、ViDeBERTa_base、ViDeBERTa_largeの3つのバージョンは、高品質で多様なベトナム語テキストの大規模コーパスで事前訓練されている。
我々は,3つの重要な自然言語下流タスク,パート・オブ・音声タギング,名前付き親和性認識,質問応答を微調整し,評価する。
- 参考スコア(独自算出の注目度): 10.000783498978604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents ViDeBERTa, a new pre-trained monolingual language model
for Vietnamese, with three versions - ViDeBERTa_xsmall, ViDeBERTa_base, and
ViDeBERTa_large, which are pre-trained on a large-scale corpus of high-quality
and diverse Vietnamese texts using DeBERTa architecture. Although many
successful pre-trained language models based on Transformer have been widely
proposed for the English language, there are still few pre-trained models for
Vietnamese, a low-resource language, that perform good results on downstream
tasks, especially Question answering. We fine-tune and evaluate our model on
three important natural language downstream tasks, Part-of-speech tagging,
Named-entity recognition, and Question answering. The empirical results
demonstrate that ViDeBERTa with far fewer parameters surpasses the previous
state-of-the-art models on multiple Vietnamese-specific natural language
understanding tasks. Notably, ViDeBERTa_base with 86M parameters, which is only
about 23% of PhoBERT_large with 370M parameters, still performs the same or
better results than the previous state-of-the-art model. Our ViDeBERTa models
are available at: https://github.com/HySonLab/ViDeBERTa.
- Abstract(参考訳): 本稿では,ベトナム語用単言語モデルViDeBERTaを,ベトナム語用単言語モデルViDeBERTa_xsmall,ViDeBERTa_base,ViDeBERTa_largeの3つのバージョンで提案する。
Transformerをベースとした事前学習型言語モデルの多くは英語で広く提案されているが、ダウンストリームタスク、特に質問応答において良い結果をもたらすベトナム語のための事前学習型モデルはまだ少ない。
我々は,3つの重要な自然言語下流タスク,パート・オブ・音声タギング,名前付き親和性認識,質問応答を微調整し,評価する。
実験の結果,ViDeBERTaはベトナム固有の複数の自然言語理解タスクにおける従来の最先端モデルを上回るパラメータがはるかに少ないことがわかった。
注目すべきは、86Mパラメータを持つViDeBERTa_baseは、370Mパラメータを持つPhoBERT_largeの23%に過ぎないが、それでも以前の最先端モデルと同じあるいはより良い結果が得られることだ。
私たちのViDeBERTaモデルは、https://github.com/HySonLab/ViDeBERTaで利用可能です。
関連論文リスト
- Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation [82.5217996570387]
我々は,自動回帰テキスト・画像生成のための事前学習言語モデルを適用した。
事前訓練された言語モデルは限られた助けを提供する。
論文 参考訳(メタデータ) (2023-11-27T07:19:26Z) - ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text
Processing [1.1765925931670576]
ベトナムのソーシャルメディアテキストであるViSoBERTに対して,最初のモノリンガル事前学習言語モデルを提案する。
我々の実験では、ViSoBERTはパラメータがはるかに少ないため、ベトナムのソーシャルメディアタスクにおける過去の最先端モデルを上回ることが示されている。
論文 参考訳(メタデータ) (2023-10-17T11:34:50Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
本研究は,多言語画像音声検索におけるCLIPとHuBERTの大規模,英語のみの事前学習モデル(CLIPとHuBERT)の利用について検討する。
非英語画像音声検索では、各言語毎に個別のモデルを訓練する場合と、3言語すべてで音声を処理する1つのモデルの両方において、最先端のパフォーマンスを幅広いマージンで上回ります。
論文 参考訳(メタデータ) (2022-11-02T14:54:45Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
SAP(Sequential Autoregressive Prompting)は,双方向モデルの高速化を実現する技術である。
SAPは質問応答と要約に有効であることを示す。
この結果から,より広範な言語モデルの創発的特性として,プロンプトに基づく学習が証明された。
論文 参考訳(メタデータ) (2022-09-29T01:35:57Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
低リソース言語に対するモノリンガルデータによる事前学習の効果を分析する。
新たに作成したマルタ語コーパスを提示し、事前学習データサイズとドメインが下流のパフォーマンスに与える影響を判定する。
スクラッチからトレーニングされた単言語BERTモデル(BERTu)と、さらに事前訓練された多言語BERT(mBERTu)の2つのモデルを比較する。
論文 参考訳(メタデータ) (2022-05-21T06:44:59Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
3段階学習アルゴリズムを用いてモデル出力の言語フィードバックから学習する。
合成実験において、まず言語モデルがフィードバックを正確に組み込んで改良を行うかどうかを評価する。
人間の手書きフィードバックのサンプルは100程度しかなく, 学習アルゴリズムはGPT-3モデルを微調整し, ほぼ人間レベルの要約を行う。
論文 参考訳(メタデータ) (2022-04-29T15:06:58Z) - From Universal Language Model to Downstream Task: Improving
RoBERTa-Based Vietnamese Hate Speech Detection [8.602181445598776]
汎用のRoBERTa言語モデルを特定のテキスト分類タスクであるベトナムのヘイト音声検出に適応させるパイプラインを提案する。
実験の結果,提案パイプラインの性能が著しく向上し,0.7221 f1のベトナム人ヘイトスピーチ検出キャンペーンが達成された。
論文 参考訳(メタデータ) (2021-02-24T09:30:55Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
ウィキペディアデータから言語固有のBERTモデルを作成するための、単純で完全に自動化されたパイプラインを導入します。
我々は,これらのモデルの有効性を,Universal Dependenciesデータに基づく最先端のUDifyを用いて評価する。
論文 参考訳(メタデータ) (2020-06-02T11:57:53Z) - Exploring Versatile Generative Language Model Via Parameter-Efficient
Transfer Learning [70.81910984985683]
本稿では,1つの大規模事前学習モデルを用いて,複数のダウンストリーム生成タスクを同時に微調整する効果的な方法を提案する。
5つの多様な言語生成タスクの実験は、各タスクに2-3%のパラメータを追加するだけで、モデル全体の微調整性能を維持または改善できることを示している。
論文 参考訳(メタデータ) (2020-04-08T06:18:44Z) - PhoBERT: Pre-trained language models for Vietnamese [11.685916685552982]
PhoBERTはベトナムで事前訓練された最初の大規模モノリンガル言語モデルである。
実験結果から, PhoBERT は最新の学習済み多言語モデル XLM-R よりも一貫して優れていた。
我々はPhoBERTをリリースし、ベトナムのNLPの今後の研究と下流の応用を促進する。
論文 参考訳(メタデータ) (2020-03-02T10:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。