Unravelling physics beyond the standard model with classical and quantum
anomaly detection
- URL: http://arxiv.org/abs/2301.10787v2
- Date: Fri, 27 Jan 2023 13:43:43 GMT
- Title: Unravelling physics beyond the standard model with classical and quantum
anomaly detection
- Authors: Julian Schuhmacher, Laura Boggia, Vasilis Belis, Ema Puljak, Michele
Grossi, Maurizio Pierini, Sofia Vallecorsa, Francesco Tacchino, Panagiotis
Barkoutsos, and Ivano Tavernelli
- Abstract summary: Current experiments do not indicate clear signs of new physics that could guide the development of additional Beyond Standard Model (BSM) theories.
We propose a novel strategy to perform anomaly detection in a supervised learning setting, based on the artificial creation of anomalies through a random process.
Even more promising, we find employing an SVC trained to identify the artificial anomalies, it is possible to identify realistic BSM events with high accuracy.
- Score: 1.014313095022286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much hope for finding new physics phenomena at microscopic scale relies on
the observations obtained from High Energy Physics experiments, like the ones
performed at the Large Hadron Collider (LHC). However, current experiments do
not indicate clear signs of new physics that could guide the development of
additional Beyond Standard Model (BSM) theories. Identifying signatures of new
physics out of the enormous amount of data produced at the LHC falls into the
class of anomaly detection and constitutes one of the greatest computational
challenges. In this article, we propose a novel strategy to perform anomaly
detection in a supervised learning setting, based on the artificial creation of
anomalies through a random process. For the resulting supervised learning
problem, we successfully apply classical and quantum Support Vector Classifiers
(CSVC and QSVC respectively) to identify the artificial anomalies among the SM
events. Even more promising, we find that employing an SVC trained to identify
the artificial anomalies, it is possible to identify realistic BSM events with
high accuracy. In parallel, we also explore the potential of quantum algorithms
for improving the classification accuracy and provide plausible conditions for
the best exploitation of this novel computational paradigm.
Related papers
- A novel quantum machine learning classifier to search for new physics [3.5009667752315474]
We propose a variational quantum searching neighbor(VQSN) algorithm to search for NP.
The results suggest that VQSN demonstrates superior efficiency to a classical counterpart k-nearest neighbor algorithm.
arXiv Detail & Related papers (2024-10-24T15:27:28Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Ensemble models outperform single model uncertainties and predictions
for operator-learning of hypersonic flows [43.148818844265236]
Training scientific machine learning (SciML) models on limited high-fidelity data offers one approach to rapidly predict behaviors for situations that have not been seen before.
High-fidelity data is itself in limited quantity to validate all outputs of the SciML model in unexplored input space.
We extend a DeepONet using three different uncertainty mechanisms: mean-variance estimation, evidential uncertainty, and ensembling.
arXiv Detail & Related papers (2023-10-31T18:07:29Z) - Quantum sequential scattering model for quantum state learning [6.040584660207655]
We devise the quantum scattering model (QSSM) to overcome the vanishing problem to a large class of high-dimensional sequential target states possessing gradient-scaled Schmidt ranks.
Our work has indicated that an increasing entanglement, a property of quantum states, in the target states, necessitates a larger scaled model, which could reduce our model's learning performance and efficiency.
arXiv Detail & Related papers (2023-10-11T18:31:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Generative Adversarial Networks For Anomaly Detection In High
Energy Physics [0.0]
We develop a quantum generative adversarial network to identify anomalous events.
The method learns the background distribution from SM data and, then, determines whether a given event is characteristic for the learned background distribution.
We find that the quantum generative techniques using ten times fewer training data samples can yield comparable accuracy to the classical counterpart for the detection of the Graviton and Higgs particles.
arXiv Detail & Related papers (2023-04-27T18:01:14Z) - Quantum anomaly detection in the latent space of proton collision events
at the LHC [1.0480625205078853]
We propose a new strategy for anomaly detection at the LHC based on unsupervised quantum machine learning algorithms.
For kernel-based anomaly detection, we identify a regime where the quantum model significantly outperforms its classical counterpart.
We demonstrate that the observed consistent performance advantage is related to the inherent quantum properties of the circuit used.
arXiv Detail & Related papers (2023-01-25T19:00:01Z) - Uncovering Instabilities in Variational-Quantum Deep Q-Networks [0.0]
We show that variational quantum deep Q-networks (VQ-DQN) are subject to instabilities that cause the learned policy to diverge.
We execute RL algorithms on an actual quantum processing unit (an IBM Quantum Device) and investigate differences in behaviour between simulated and physical quantum systems.
arXiv Detail & Related papers (2022-02-10T17:52:44Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Bayesian Neural Networks for Fast SUSY Predictions [58.720142291102135]
In this paper, machine learning is used to model the mapping from the parameter space of a BSM theory to some of its predictions.
All three quantities are modeled with average percent errors of 3.34% or less and in a time significantly shorter than is possible with the supersymmetry codes from which the results are derived.
Results are a further demonstration of the potential for machine learning to model accurately the mapping from the high dimensional spaces of BSM theories to their predictions.
arXiv Detail & Related papers (2020-07-09T01:45:06Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.