A novel quantum machine learning classifier to search for new physics
- URL: http://arxiv.org/abs/2410.18847v1
- Date: Thu, 24 Oct 2024 15:27:28 GMT
- Title: A novel quantum machine learning classifier to search for new physics
- Authors: Ji-Chong Yang, Shuai Zhang, Chong-Xing Yue,
- Abstract summary: We propose a variational quantum searching neighbor(VQSN) algorithm to search for NP.
The results suggest that VQSN demonstrates superior efficiency to a classical counterpart k-nearest neighbor algorithm.
- Score: 3.5009667752315474
- License:
- Abstract: Due to the success of the Standard Model~(SM), it is reasonable to anticipate that, the signal of new physics~(NP) beyond the SM is small, and future searches for NP and precision tests of the SM will require high luminosity collider experiments. Moreover, as the precision tests of the SM advances, rarer processes with a greater number of final-state particles will require consideration, which will in turn require the analysis of a multitude of observables. As an inherent consequence of the high luminosity, the generation of a large amount of experimental data in a large feature space presents a significant challenge for data processing. In recent years, quantum machine learning has emerged as a promising approach for processing large amounts of complex data on a quantum computer. In this study, we propose a variational quantum searching neighbor~(VQSN) algorithm to search for NP. As an example, we apply the VQSN in the phenomenological study of the gluon quartic gauge couplings~(gQGCs) at the Large Hadron Collider. The results suggest that VQSN demonstrates superior efficiency to a classical counterpart k-nearest neighbor algorithm, even when dealing with classical data.
Related papers
- Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers [3.5051814539447474]
We propose a novel quantum encoding framework for graph classification using Variational Quantums (VQCs)
By constructing slightly more complex circuits tailored for graph encoding, we demonstrate that VQCs can effectively classify graphs within the constraints of current quantum hardware.
arXiv Detail & Related papers (2025-01-24T02:26:21Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
This research provides a hybrid quantum-classical graph convolutional network (QGCNN) for learning HEP data.
The proposed framework demonstrates an advantage over classical multilayer perceptron and convolutional neural networks in the aspect of number of parameters.
In terms of testing accuracy, the QGCNN shows comparable performance to a quantum convolutional neural network on the same HEP dataset.
arXiv Detail & Related papers (2021-01-15T16:02:52Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Quantum-enhanced data classification with a variational entangled sensor
network [3.1083620257082707]
Supervised learning assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by classical machine-learning algorithms.
Our work paves a new route for quantum-enhanced data processing and its applications in the NISQ era.
arXiv Detail & Related papers (2020-06-22T01:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.