Reflective Artificial Intelligence
- URL: http://arxiv.org/abs/2301.10823v3
- Date: Thu, 27 Apr 2023 08:51:09 GMT
- Title: Reflective Artificial Intelligence
- Authors: Peter R. Lewis and Stefan Sarkadi
- Abstract summary: Many important qualities that a human mind would have previously brought to the activity are utterly absent in AI.
One core feature that humans bring to tasks is reflection.
Yet this capability is utterly missing from current mainstream AI.
In this paper we ask what reflective AI might look like.
- Score: 2.7412662946127755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is about making computers that do the sorts of
things that minds can do, and as we progress towards this goal, we tend to
increasingly delegate human tasks to machines. However, AI systems usually do
these tasks with an unusual imbalance of insight and understanding: new, deeper
insights are present, yet many important qualities that a human mind would have
previously brought to the activity are utterly absent. Therefore, it is crucial
to ask which features of minds have we replicated, which are missing, and if
that matters. One core feature that humans bring to tasks, when dealing with
the ambiguity, emergent knowledge, and social context presented by the world,
is reflection. Yet this capability is utterly missing from current mainstream
AI. In this paper we ask what reflective AI might look like. Then, drawing on
notions of reflection in complex systems, cognitive science, and agents, we
sketch an architecture for reflective AI agents, and highlight ways forward.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Brain-inspired and Self-based Artificial Intelligence [23.068338822392544]
"Can machines think?" and the Turing Test to assess whether machines could achieve human-level intelligence is one of the roots of AI.
This paper challenge the idea of a "thinking machine" supported by current AIs since there is no sense of self in them.
Current artificial intelligence is only seemingly intelligent information processing and does not truly understand or be subjectively aware of oneself.
arXiv Detail & Related papers (2024-02-29T01:15:17Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Review on Objective-Driven Artificial Intelligence [0.0]
Humans have an innate ability to understand context, nuances, and subtle cues in communication.
Humans possess a vast repository of common-sense knowledge that helps us make logical inferences and predictions about the world.
Machines lack this innate understanding and often struggle with making sense of situations that humans find trivial.
arXiv Detail & Related papers (2023-08-20T02:07:42Z) - Suffering Toasters -- A New Self-Awareness Test for AI [0.0]
We argue that all current intelligence tests are insufficient to point to the existence or lack of intelligence.
We propose a new approach to test for artificial self-awareness and outline a possible implementation.
arXiv Detail & Related papers (2023-06-29T18:58:01Z) - Conscious AI [6.061244362532694]
Recent advances in artificial intelligence have achieved human-scale speed and accuracy for classification tasks.
Current systems do not need to be conscious to recognize patterns and classify them.
For AI to progress to more complicated tasks requiring intuition and empathy, it must develop capabilities such as metathinking, creativity, and empathy akin to human self-awareness or consciousness.
arXiv Detail & Related papers (2021-05-12T15:53:44Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z) - Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike
Common Sense [142.53911271465344]
We argue that the next generation of AI must embrace "dark" humanlike common sense for solving novel tasks.
We identify functionality, physics, intent, causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common sense.
arXiv Detail & Related papers (2020-04-20T04:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.