論文の概要: Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
- arxiv url: http://arxiv.org/abs/2301.10956v4
- Date: Sat, 23 Mar 2024 08:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 04:08:18.579484
- Title: Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
- Title(参考訳): グラフニューラルネットワークは、グラフ構造から隠れた特徴を復元できる
- Authors: Ryoma Sato,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ学習問題の一般的なモデルである。
GNNはグラフ構造を自分自身で完全に活用できることを示す。
事実上、GNNは下流タスクに隠されたノード機能と明示的なノード機能の両方を使用することができる。
- 参考スコア(独自算出の注目度): 17.912507269030577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are popular models for graph learning problems. GNNs show strong empirical performance in many practical tasks. However, the theoretical properties have not been completely elucidated. In this paper, we investigate whether GNNs can exploit the graph structure from the perspective of the expressive power of GNNs. In our analysis, we consider graph generation processes that are controlled by hidden (or latent) node features, which contain all information about the graph structure. A typical example of this framework is kNN graphs constructed from the hidden features. In our main results, we show that GNNs can recover the hidden node features from the input graph alone, even when all node features, including the hidden features themselves and any indirect hints, are unavailable. GNNs can further use the recovered node features for downstream tasks. These results show that GNNs can fully exploit the graph structure by themselves, and in effect, GNNs can use both the hidden and explicit node features for downstream tasks. In the experiments, we confirm the validity of our results by showing that GNNs can accurately recover the hidden features using a GNN architecture built based on our theoretical analysis.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ学習問題の一般的なモデルである。
GNNは、多くの実践的なタスクにおいて、強い経験的パフォーマンスを示す。
しかし、理論的な性質は完全に解明されていない。
本稿では,GNNの表現力の観点から,GNNがグラフ構造を活用できるかどうかを検討する。
本分析では,グラフ構造に関するすべての情報を含む隠れノード特徴(あるいは潜在ノード特徴)によって制御されるグラフ生成プロセスについて考察する。
このフレームワークの典型的な例は、隠れた特徴から構築されたkNNグラフである。
本研究の主目的は,隠れた特徴自身や間接的なヒントを含むすべてのノード特徴が利用できない場合でも,GNNが入力グラフのみから隠れたノード特徴を復元できることである。
GNNはさらに、ダウンストリームタスクのために回収されたノード機能を利用することができる。
これらの結果から、GNNはグラフ構造を自分自身で完全に活用でき、事実上、GNNは下流タスクに隠されたノード機能と明示的なノード機能の両方を利用することができる。
実験では,理論解析に基づいて構築されたGNNアーキテクチャを用いて,GNNが隠れた特徴を正確に復元できることを示し,その妥当性を確認した。
関連論文リスト
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
グラフネットワーク(GNN)のトレーニングを強化するための新しいグラフ構造Prompt Learning法(GPL)を提案する。
GPLはタスク非依存のグラフ構造損失を利用して、GNNが下流タスクを同時に解決しながら固有のグラフ特性を学習することを奨励している。
11の実世界のデータセットの実験では、ニューラルネットワークによってトレーニングされた後、GNNはノード分類、グラフ分類、エッジタスクにおいて、元のパフォーマンスを大幅に上回った。
論文 参考訳(メタデータ) (2024-07-16T03:59:18Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Incomplete Graph Representation and Learning via Partial Graph Neural
Networks [7.227805463462352]
多くのアプリケーションでは、グラフノードの属性が部分的に未知/欠落している不完全な形式でグラフがやってくる可能性がある。
既存のGNNは、属性不完全なグラフデータを直接処理できない完全なグラフに基づいて設計されている。
本研究では,属性不完全グラフ表現と学習のための部分グラフニューラルネットワーク(PaGNN)を新たに開発した。
論文 参考訳(メタデータ) (2020-03-23T08:29:59Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。