Physiological search for quantum biological effects based on the
Wigner-Yanase connection between coherence and uncertainty
- URL: http://arxiv.org/abs/2301.11023v3
- Date: Fri, 11 Aug 2023 10:04:43 GMT
- Title: Physiological search for quantum biological effects based on the
Wigner-Yanase connection between coherence and uncertainty
- Authors: I. K. Kominis
- Abstract summary: Wigner-Yanase information is used as a measure of quantum coherence in spin-dependent radical-pair reactions.
Measurable physiological quantities are shown to reflect the introduced Wigner-Yanase measure of singlet-triplet coherence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A fundamental concept of quantum physics, the Wigner Yanase information, is
here used as a measure of quantum coherence in spin-dependent radical-pair
reactions pertaining to biological magnetic sensing. This measure is connected
to the uncertainty of the reaction yields, and further, to the statistics of a
cellular receptor-ligand system used to biochemically convey magnetic-field
changes. Measurable physiological quantities, such as the number of receptors
and fluctuations in ligand concentration, are shown to reflect the introduced
Wigner-Yanase measure of singlet-triplet coherence. We arrive at a
quantum-biological uncertainty relation, connecting the product of a biological
resource and a biological figure of merit with the Wigner-Yanase coherence. Our
approach can serve a general search for quantum-coherent effects within
cellular environments.
Related papers
- Quantum Information Resources in Spin-1 Heisenberg Dimer Systems [0.0]
We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system.
We derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum correlation metrics.
arXiv Detail & Related papers (2024-09-12T14:36:21Z) - Geometric quantum discord and coherence in a dipolar interacting
magnetic system [0.0]
This work explores the effect of the quantum-level crossing, induced by the magnetic anisotropies of dipolar interacting systems, on the quantum discord and coherence of the system.
The results show that, while the quantum discord has a clear signature of the quantum level-crossing, the basis dependence of the quantum coherence hides the crossover regarding the measured basis.
arXiv Detail & Related papers (2023-01-07T16:45:17Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum relative entropy shows singlet-triplet coherence is a resource
in the radical-pair mechanism of biological magnetic sensing [0.0]
Radical-pair reactions pertinent to biological magnetic field sensing are an ideal system for demonstrating the paradigm of quantum biology.
We introduce and explore a formal measure quantifying singlet-triplet coherence of radical-pairs using the concept of quantum relative entropy.
arXiv Detail & Related papers (2020-01-25T14:05:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.