論文の概要: Box$^2$EL: Concept and Role Box Embeddings for the Description Logic
EL++
- arxiv url: http://arxiv.org/abs/2301.11118v3
- Date: Wed, 16 Aug 2023 16:11:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 17:31:36.328532
- Title: Box$^2$EL: Concept and Role Box Embeddings for the Description Logic
EL++
- Title(参考訳): box$^2$el: 記述論理el++のための概念とロールボックス埋め込み
- Authors: Mathias Jackermeier, Jiaoyan Chen, Ian Horrocks
- Abstract要約: Box$2$ELは、概念と役割の両方をハイパーアライメントボックスとして表現する。
理論的にモデルの健全性を証明し、広範囲な実験的評価を示す。
評価の一環として,原子概念と複素概念の両方を含む仮定予測のための新しいベンチマークを導入する。
- 参考スコア(独自算出の注目度): 18.779933562725635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Description logic (DL) ontologies extend knowledge graphs (KGs) with
conceptual information and logical background knowledge. In recent years, there
has been growing interest in inductive reasoning techniques for such
ontologies, which promise to complement classical deductive reasoning
algorithms. Similar to KG completion, several existing approaches learn
ontology embeddings in a latent space, while additionally ensuring that they
faithfully capture the logical semantics of the underlying DL. However, they
suffer from several shortcomings, mainly due to a limiting role representation.
We propose Box$^2$EL, which represents both concepts and roles as boxes (i.e.,
axis-aligned hyperrectangles) and demonstrate how it overcomes the limitations
of previous methods. We theoretically prove the soundness of our model and
conduct an extensive experimental evaluation, achieving state-of-the-art
results across a variety of datasets. As part of our evaluation, we introduce a
novel benchmark for subsumption prediction involving both atomic and complex
concepts.
- Abstract(参考訳): 記述論理(DL)オントロジーは知識グラフ(KG)を概念情報と論理背景知識で拡張する。
近年,古典的帰納的推論アルゴリズムを補完する存在論に対する帰納的推論手法への関心が高まっている。
KG 補完と同様に、いくつかの既存のアプローチは、潜在空間におけるオントロジーの埋め込みを学習し、基礎となる DL の論理的意味を忠実に捉えることを保証する。
しかし、主に役割表現の制限のため、いくつかの欠点に苦しむ。
ボックスとしての概念と役割を両立するBox$2$EL(軸方向のハイパー矩形)を提案し,従来の手法の限界を克服する方法を実証する。
我々は理論的にモデルの健全性を証明し、様々なデータセットにまたがって最先端の結果を達成し、広範な実験的評価を行う。
評価の一環として,原子概念と複素概念の両方を含む仮定予測のための新しいベンチマークを導入する。
関連論文リスト
- TransBox: EL++-closed Ontology Embedding [14.850996103983187]
我々は,多対一,一対多,多対多の関係を扱える効率的なEL++-クロース埋め込み法を開発した。
実験により,TransBoxは様々な実世界のデータセットにまたがって最先端のパフォーマンスを実現し,複雑な公理を予測できることを示した。
論文 参考訳(メタデータ) (2024-10-18T16:17:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation [85.12429517510311]
LogicDiagは、セマンティックセグメンテーションのためのニューラルネットワークによる半教師付き学習フレームワークである。
私たちの重要な洞察は、記号的知識によって識別される擬似ラベル内の衝突は、強いが一般的に無視される学習信号として機能する、ということです。
本稿では,論理規則の集合として意味論的概念の構造的抽象化を定式化するデータ・ハングリーセグメンテーションシナリオにおけるLogicDiagの実践的応用について紹介する。
論文 参考訳(メタデータ) (2023-08-24T06:50:07Z) - Lattice-preserving $\mathcal{ALC}$ ontology embeddings with saturation [50.05281461410368]
OWL表現の埋め込みを生成するため,順序保存型埋め込み法を提案する。
本手法は,いくつかの知識ベース完了タスクにおいて,最先端の組込み手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-11T22:27:51Z) - From axioms over graphs to vectors, and back again: evaluating the
properties of graph-based ontology embeddings [78.217418197549]
埋め込みを生成するアプローチの1つは、名前付きエンティティと論理公理構造のためのノードとエッジのセットを導入することである。
グラフに埋め込む方法(グラフ射影)は、それらが利用する公理の種類と異なる性質を持つ。
論文 参考訳(メタデータ) (2023-03-29T08:21:49Z) - Why Settle for Just One? Extending EL++ Ontology Embeddings with
Many-to-Many Relationships [2.599882743586164]
知識グラフ埋め込みは、知識グラフの実体と関係の低次元表現を提供する。
この方向の最近の取り組みは、EL++と呼ばれる記述(記述のための論理論理)への埋め込みの学習である。
我々は、埋め込み表現を学習しながら、多対多の関係を考慮できる、シンプルで効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-10-20T13:23:18Z) - DISSECT: Disentangled Simultaneous Explanations via Concept Traversals [33.65478845353047]
DISSECTは、ディープラーニングモデル推論を説明するための新しいアプローチである。
DISSECTは、分類器の信号から生成モデルを訓練することにより、異なる概念の分類器固有の「名詞」を発見する方法を提供する。
DISSECTは,複数の概念を分離し,共同訓練による推論と結合したCTを生成する。
論文 参考訳(メタデータ) (2021-05-31T17:11:56Z) - Learning Description Logic Ontologies. Five Approaches. Where Do They
Stand? [14.650545418986058]
我々は、記述論理(DL)の作成のために提案された機械学習とデータマイニングのアプローチを強調した。
これらは関連ルールマイニング、形式的概念分析、帰納的論理プログラミング、計算学習理論、ニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2021-04-02T18:36:45Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Plausible Reasoning about EL-Ontologies using Concept Interpolation [27.314325986689752]
本稿では,モデル理論の明確な意味論に基づく帰納的機構を提案する。
我々は、カテゴリーベース誘導の認知モデルと密接に関連している強力なコモンセンス推論機構である推論に焦点を当てた。
論文 参考訳(メタデータ) (2020-06-25T14:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。