論文の概要: Two-step interpretable modeling of Intensive Care Acquired Infections
- arxiv url: http://arxiv.org/abs/2301.11146v2
- Date: Wed, 6 Mar 2024 13:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 18:30:53.341467
- Title: Two-step interpretable modeling of Intensive Care Acquired Infections
- Title(参考訳): 集中治療後感染の2段階解釈モデル
- Authors: Giacomo Lancia, Meri Varkila, Olaf Cremer, Cristian Spitoni
- Abstract要約: 本稿では,高解像度長手データと生存モデルの動的予測機能を統合するための新しい手法を提案する。
モデルの解釈可能性を維持しながら予測力を向上すること。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel methodology for integrating high resolution longitudinal
data with the dynamic prediction capabilities of survival models. The aim is
two-fold: to improve the predictive power while maintaining interpretability of
the models. To go beyond the black box paradigm of artificial neural networks,
we propose a parsimonious and robust semi-parametric approach (i.e., a
landmarking competing risks model) that combines routinely collected
low-resolution data with predictive features extracted from a convolutional
neural network, that was trained on high resolution time-dependent information.
We then use saliency maps to analyze and explain the extra predictive power of
this model. To illustrate our methodology, we focus on healthcare-associated
infections in patients admitted to an intensive care unit.
- Abstract(参考訳): 本稿では,高解像度長手データと生存モデルの動的予測機能を統合する新しい手法を提案する。
目標は2つある:モデルの解釈可能性を維持しながら予測力を向上させること。
ニューラルネットワークのブラックボックスパラダイムを超越するために,高分解能の時間依存情報に基づいて学習された畳み込みニューラルネットワークから抽出された予測特徴と,日常的に収集される低解像度データを組み合わせた,強固な半パラメトリックアプローチ(すなわち,ランドマーク型競合リスクモデル)を提案する。
次に、このモデルの余分な予測力を分析し説明するために、塩分マップを使用します。
本手法を説明するために,集中治療室に入院した患者の医療関連感染症に焦点を当てた。
関連論文リスト
- Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
本研究の目的は、ヒト脳組織において最も好ましい物質モデルを特定することである。
我々は、広く受け入れられている古典モデルの一般化に、人工ニューラルネットワークと多重回帰法を適用した。
論文 参考訳(メタデータ) (2023-10-16T18:49:59Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
本稿では,腫瘍ダイナミックニューラル-ODEを薬理学的インフォームドニューラルネットワークとして用いることを提案する。
我々は,TDNODEが既存のモデルの重要な限界を克服し,乱れたデータから偏りのない予測を行うことを示す。
得られた測定値を用いて,患者の全身生存率(OS)を高い精度で予測できることを示す。
論文 参考訳(メタデータ) (2023-08-02T18:08:27Z) - Visual Interpretable and Explainable Deep Learning Models for Brain
Tumor MRI and COVID-19 Chest X-ray Images [0.0]
我々は、ディープニューラルネットワークが医療画像をどのように分析するかを照らすための属性手法を評価する。
我々は近年の深層畳み込みニューラルネットワークモデルによる脳腫瘍MRIと新型コロナウイルス胸部X線データセットからの予測を属性とした。
論文 参考訳(メタデータ) (2022-08-01T16:05:14Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning [14.03923026690186]
本研究では,予測の不確かさを推定できる不確実性を考慮した深層カーネル学習モデルを提案する。
ほとんどの場合、提案したモデルは一般的なアーキテクチャよりも優れた性能を示している。
私たちのモデルは、挑戦的で議論の余地のあるテストサンプルを検出するためにも使用できます。
論文 参考訳(メタデータ) (2021-06-01T17:09:47Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
今後の新型コロナウイルス感染者の増加範囲を予測するための深層学習モデルを提案する。
様々なソースから収集したデータを用いて、米国全郡で7日以内に感染が拡大する範囲を推定する。
論文 参考訳(メタデータ) (2020-07-31T23:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。