論文の概要: Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE
- arxiv url: http://arxiv.org/abs/2308.01362v3
- Date: Fri, 20 Oct 2023 20:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 08:00:50.182064
- Title: Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE
- Title(参考訳): ニューラルネットワークを用いた腫瘍ダイナミックモデリングと総合生存予測のための説明可能なディープラーニング
- Authors: Mark Laurie and James Lu
- Abstract要約: 本稿では,腫瘍ダイナミックニューラル-ODEを薬理学的インフォームドニューラルネットワークとして用いることを提案する。
我々は,TDNODEが既存のモデルの重要な限界を克服し,乱れたデータから偏りのない予測を行うことを示す。
得られた測定値を用いて,患者の全身生存率(OS)を高い精度で予測できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While tumor dynamic modeling has been widely applied to support the
development of oncology drugs, there remains a need to increase predictivity,
enable personalized therapy, and improve decision-making. We propose the use of
Tumor Dynamic Neural-ODE (TDNODE) as a pharmacology-informed neural network to
enable model discovery from longitudinal tumor size data. We show that TDNODE
overcomes a key limitation of existing models in its ability to make unbiased
predictions from truncated data. The encoder-decoder architecture is designed
to express an underlying dynamical law which possesses the fundamental property
of generalized homogeneity with respect to time. Thus, the modeling formalism
enables the encoder output to be interpreted as kinetic rate metrics, with
inverse time as the physical unit. We show that the generated metrics can be
used to predict patients' overall survival (OS) with high accuracy. The
proposed modeling formalism provides a principled way to integrate multimodal
dynamical datasets in oncology disease modeling.
- Abstract(参考訳): 腫瘍ダイナミックモデリングは腫瘍学薬の開発に広く応用されているが、予測性を高め、パーソナライズされた治療を可能にし、意思決定を改善する必要がある。
本稿では,TDNODEを薬理学的インフォームドニューラルネットワークとして利用し,縦断的腫瘍サイズデータからモデル発見を可能にすることを提案する。
我々は,TDNODEが既存のモデルの重要な限界を克服し,乱れたデータから偏りのない予測を行うことを示す。
エンコーダ・デコーダアーキテクチャは、時間に関して一般化された均一性の基本的な性質を持つ基礎となる動的法則を表現するように設計されている。
したがって、モデリング形式はエンコーダ出力を運動速度指標として解釈し、逆時間を物理単位として解釈することができる。
得られた指標を用いて,患者の全身生存率(OS)を高精度に予測できることを示す。
提案したモデリング形式は,腫瘍疾患モデルにマルチモーダルな動的データセットを統合するための原則的手法を提供する。
関連論文リスト
- Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization [3.666412718346211]
本稿では,データ駆動と物理に基づくコスト関数を統合する新しい手法を提案する。
腫瘍組織と脳組織の学習分布が,それぞれの成長と弾性の方程式にどの程度順応するかを定量化する,ユニークな離散化手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T15:36:14Z) - Integration of Graph Neural Network and Neural-ODEs for Tumor Dynamic Prediction [4.850774880198265]
本稿では,二部グラフ畳み込みニューラルネットワーク(GCN)とニューラル正規微分方程式(Neural-ODE)を組み合わせたグラフエンコーダを提案する。
まず,本手法が経験的モデルにより著しく改善される腫瘍のダイナミックモデルを発見することができることを示す。
本研究は, 提案手法が有望であり, プリクリニカル・セッティングに応用できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-02T06:39:08Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Two-step interpretable modeling of Intensive Care Acquired Infections [0.0]
本稿では,高解像度長手データと生存モデルの動的予測機能を統合するための新しい手法を提案する。
モデルの解釈可能性を維持しながら予測力を向上すること。
論文 参考訳(メタデータ) (2023-01-26T14:54:17Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Neural Pharmacodynamic State Space Modeling [1.589915930948668]
本研究では,治療が疾患状態に与える影響を物理にインスパイアした,新たな注意に基づくニューラルアーキテクチャを活用した深層生成モデルを提案する。
提案モデルでは, 一般化が大幅に改善され, 実世界の臨床データから, 癌進展のダイナミクスに関する解釈可能な知見が得られる。
論文 参考訳(メタデータ) (2021-02-22T17:51:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。