論文の概要: Classification of vertices on social networks by multiple approaches
- arxiv url: http://arxiv.org/abs/2301.11288v1
- Date: Fri, 13 Jan 2023 09:42:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-29 13:13:12.340380
- Title: Classification of vertices on social networks by multiple approaches
- Title(参考訳): 複数のアプローチによるソーシャルネットワーク上の頂点の分類
- Authors: Hac{\i} \.Ismail Aslan, Chang Choi, Hoon Ko
- Abstract要約: ソーシャルネットワークの場合、個別のコミュニティのラベルを評価することが不可欠である。
これらのインタラクションベースのエンティティそれぞれに対して、テストベンチリポジトリとして、ソーシャルグラフ、メーリングデータセット、および2つの引用セットが選択される。
本論文は,最も有用な手法だけでなく,グラフニューラルネットワークの動作方法も検討した。
- 参考スコア(独自算出の注目度): 1.370151489527964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the advent of the expressions of data other than tabular formats, the
topological compositions which make samples interrelated came into prominence.
Analogically, those networks can be interpreted as social connections, dataflow
maps, citation influence graphs, protein bindings, etc. However, in the case of
social networks, it is highly crucial to evaluate the labels of discrete
communities. The reason underneath for such a study is the non-negligible
importance of analyzing graph networks to partition the vertices by using the
topological features of network graphs, solely. For each of these
interaction-based entities, a social graph, a mailing dataset, and two citation
sets are selected as the testbench repositories. This paper, it was not only
assessed the most valuable method but also determined how graph neural networks
work and the need to improve against non-neural network approaches which are
faster and computationally cost-effective. Also, this paper showed a limit to
be excesses by prospective graph neural network variations by using the
topological features of networks trialed.
- Abstract(参考訳): 表形式以外のデータ表現の出現により、サンプルを相互に関連づけるトポロジカルな構成が注目されるようになった。
同様に、これらのネットワークは、社会的接続、データフローマップ、引用影響グラフ、タンパク質結合などと解釈できる。
しかし、ソーシャルネットワークの場合、個別のコミュニティのラベルを評価することは極めて重要である。
このような研究の根底にある理由は、ネットワークグラフのトポロジ的特徴を用いて頂点を分割するグラフネットワークを解析することが、無視できない重要性である。
これらのインタラクションベースのエンティティそれぞれに対して、テストベンチリポジトリとして、ソーシャルグラフ、メーリングデータセット、および2つの引用セットが選択される。
本稿では,最も有用な手法であるだけでなく,グラフニューラルネットワークの動作や,高速かつ計算コスト効率の高い非ニューラルネットワークアプローチに対する改善の必要性についても検討した。
また,本論文では,ネットワークのトポロジカルな特徴を用いて,予測グラフニューラルネットワークの変動による超過の限界を示した。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
我々は、グラフ領域で以前に検討されていない視点から帰属法を評価する:再学習。
中心となる考え方は、属性によって識別される重要な(あるいは重要でない)関係でネットワークを再訓練することである。
我々は4つの最先端GNN属性法と5つの合成および実世界のグラフ分類データセットについて分析を行った。
論文 参考訳(メタデータ) (2024-01-01T02:03:35Z) - A Survey on Graph Classification and Link Prediction based on GNN [11.614366568937761]
本稿では,グラフ畳み込みニューラルネットワークの世界について述べる。
グラフ畳み込みニューラルネットワークの基礎を詳述する。
注意機構とオートエンコーダに基づいて、グラフニューラルネットワークモデルを解明する。
論文 参考訳(メタデータ) (2023-07-03T09:08:01Z) - BS-GAT Behavior Similarity Based Graph Attention Network for Network
Intrusion Detection [20.287285893803244]
本稿では,グラフアテンションネットワークを用いた行動類似性(BS-GAT)に基づくグラフニューラルネットワークアルゴリズムを提案する。
その結果,提案手法は有効であり,既存のソリューションと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-04-07T09:42:07Z) - Graph Belief Propagation Networks [34.137798598227874]
グラフニューラルネットワークと集合分類の利点を組み合わせたモデルを提案する。
我々のモデルでは、各ノード上のポテンシャルはそのノードの特徴にのみ依存し、エッジポテンシャルは結合行列を介して学習される。
我々のアプローチは、解釈可能なメッセージパスグラフニューラルネットワークか、より高いキャパシティと近代化されたトレーニングを備えた集団分類手法とみなすことができる。
論文 参考訳(メタデータ) (2021-06-06T05:24:06Z) - Spectral Embedding of Graph Networks [76.27138343125985]
ローカルノードの類似性と接続性、グローバル構造をトレードオフする教師なしグラフ埋め込みを導入する。
埋め込みは一般化されたグラフ Laplacian に基づいており、固有ベクトルは1つの表現においてネットワーク構造と近傍近傍の両方をコンパクトにキャプチャする。
論文 参考訳(メタデータ) (2020-09-30T04:59:10Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
様々なタイプのランダムグラフに対応するアーキテクチャを用いて,ニューラルネットワークの大規模評価を行う。
古典的な数値グラフ不変量は、それ自体が最良のネットワークを選び出すことができない。
また、主に短距離接続を持つネットワークは、多くの長距離接続が可能なネットワークよりも性能が良いことも見出した。
論文 参考訳(メタデータ) (2020-02-19T11:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。