論文の概要: Estimating Causal Effects using a Multi-task Deep Ensemble
- arxiv url: http://arxiv.org/abs/2301.11351v3
- Date: Sat, 27 May 2023 11:31:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 02:08:28.723049
- Title: Estimating Causal Effects using a Multi-task Deep Ensemble
- Title(参考訳): マルチタスク深層アンサンブルによる因果効果の推定
- Authors: Ziyang Jiang, Zhuoran Hou, Yiling Liu, Yiman Ren, Keyu Li, David
Carlson
- Abstract要約: Causal Multi-task Deep Ensemble (CMDE)は、研究人口から共有情報とグループ固有の情報の両方を学ぶ新しいフレームワークである。
提案手法は各種のデータセットやタスクにまたがって評価され,CMDEはこれらのタスクの大部分において最先端の手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 4.268861137988059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A number of methods have been proposed for causal effect estimation, yet few
have demonstrated efficacy in handling data with complex structures, such as
images. To fill this gap, we propose Causal Multi-task Deep Ensemble (CMDE), a
novel framework that learns both shared and group-specific information from the
study population. We provide proofs demonstrating equivalency of CDME to a
multi-task Gaussian process (GP) with a coregionalization kernel a priori.
Compared to multi-task GP, CMDE efficiently handles high-dimensional and
multi-modal covariates and provides pointwise uncertainty estimates of causal
effects. We evaluate our method across various types of datasets and tasks and
find that CMDE outperforms state-of-the-art methods on a majority of these
tasks.
- Abstract(参考訳): 因果効果推定のためのいくつかの手法が提案されているが、画像などの複雑な構造を用いたデータ処理の有効性を示すものはほとんどない。
このギャップを埋めるために,研究人口から共有情報とグループ固有情報の両方を学習する新しいフレームワークであるCausal Multi-task Deep Ensemble (CMDE)を提案する。
共領域化カーネルを先行とするマルチタスクガウス過程(GP)に対するCDMEの等価性を示す証明を提供する。
マルチタスクGPと比較して、CMDEは高次元およびマルチモーダルな共変体を効率的に処理し、因果効果のポイントワイズ不確実性を推定する。
本手法は各種のデータセットやタスクにまたがって評価し,CMDEがこれらのタスクの大部分において最先端の手法より優れていることを示す。
関連論文リスト
- Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
マルコフ決定過程 (MDP) 下でのマルチタスク強化学習 (RL) において, 共有潜在構造の存在は, シングルタスクRLと比較して, サンプル効率に有意な利益をもたらすことが示されている。
このような利点が、部分的に観測可能なMDP(POMDP)やより一般的な予測状態表現(PSR)といった、より一般的なシーケンシャルな意思決定問題にまで拡張できるかどうかを検討する。
提案手法は,全てのPSRに対してほぼ最適ポリシーを求めるための,証明可能なアルゴリズム UMT-PSR を提案し,PSR の合同モデルクラスが有するマルチタスク学習の利点が示されることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:50:28Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
ディープラーニングでは、各ステップでマークアップする複数の例を選択することが重要です。
BatchBALDのような既存のソリューションでは、多くの例を選択する際に大きな制限がある。
本稿では,より計算効率のよいLarge BatchBALDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-13T11:45:17Z) - Counterfactual Learning with Multioutput Deep Kernels [0.0]
本稿では,観測データを用いた反実的推論の課題に対処する。
本稿では、因果効果を推定し、適切にポリシーを学習する、対実的マルチタスクディープカーネルモデルの一般的なクラスを示す。
論文 参考訳(メタデータ) (2022-11-20T23:28:41Z) - Scalable Multi-Task Gaussian Processes with Neural Embedding of
Coregionalization [9.873139480223367]
マルチタスク回帰は,タスク間の知識伝達を実現するために,タスク類似性を活用しようとする。
コリージョン化の線形モデル(英: linear model of co Regionalalization, LMC)は、複数の独立かつ多様なGPの線形結合によってタスクの依存性を利用する、よく知られたMTGPパラダイムである。
我々は,潜伏GPを高次元の潜伏空間に変換するコリージョン化のニューラル埋め込みを開発し,リッチだが多様な振る舞いを誘導する。
論文 参考訳(メタデータ) (2021-09-20T01:28:14Z) - Multi-task Causal Learning with Gaussian Processes [17.205106391379026]
本稿では、因果モデルの有向非巡回グラフ(DAG)上に定義された一連の介入関数の相関構造を学習する問題について考察する。
本稿では,連続的な介入と異なる変数に対する実験による情報共有が可能な,最初のマルチタスク因果ガウス過程(GP)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-27T11:33:40Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
我々は、ブロックMDPにインスパイアされた堅牢な状態抽象化を実現するために、HiP-MDP設定からの共通構造の概念を活用する。
マルチタスク強化学習 (MTRL) とメタ強化学習 (Meta-RL) の両方のための新しいフレームワークのインスタンス化を導出する。
論文 参考訳(メタデータ) (2020-07-14T17:25:27Z) - Dynamic Value Estimation for Single-Task Multi-Scene Reinforcement
Learning [22.889059874754242]
同じタスクから複数のレベル/シーン/条件を持つ環境において、深層強化学習エージェントを訓練することは、多くのアプリケーションにとって欠かせないものとなっている。
本研究では,複数のMDP環境に対する動的値推定(DVE)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T17:56:08Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。