論文の概要: Heterogeneous Multi-Task Gaussian Cox Processes
- arxiv url: http://arxiv.org/abs/2308.15364v1
- Date: Tue, 29 Aug 2023 15:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 13:34:45.703886
- Title: Heterogeneous Multi-Task Gaussian Cox Processes
- Title(参考訳): 不均一多タスクガウスコックスプロセス
- Authors: Feng Zhou, Quyu Kong, Zhijie Deng, Fengxiang He, Peng Cui, Jun Zhu
- Abstract要約: 異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
- 参考スコア(独自算出の注目度): 61.67344039414193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel extension of multi-task Gaussian Cox processes
for modeling multiple heterogeneous correlated tasks jointly, e.g.,
classification and regression, via multi-output Gaussian processes (MOGP). A
MOGP prior over the parameters of the dedicated likelihoods for classification,
regression and point process tasks can facilitate sharing of information
between heterogeneous tasks, while allowing for nonparametric parameter
estimation. To circumvent the non-conjugate Bayesian inference in the MOGP
modulated heterogeneous multi-task framework, we employ the data augmentation
technique and derive a mean-field approximation to realize closed-form
iterative updates for estimating model parameters. We demonstrate the
performance and inference on both 1D synthetic data as well as 2D urban data of
Vancouver.
- Abstract(参考訳): 本稿では,多出力ガウス過程(MOGP)を介し,複数の異種相関タスク,例えば分類と回帰を共同でモデル化するマルチタスクガウスコックスプロセスの新たな拡張を提案する。
分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行するMOGPは、非パラメトリックパラメータ推定を可能にしながら、異種タスク間の情報の共有を容易にする。
mogp変調型マルチタスクフレームワークにおける非共役ベイズ推論を回避するために,データ拡張手法を用いて平均場近似を導出し,モデルパラメータ推定のための閉形式反復更新を実現する。
本稿では,バンクーバーの1次元合成データと2次元都市データの性能と推定について述べる。
関連論文リスト
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
本研究では,これらの問題に対処するために,Annealed Importance Smpling (AIS)アプローチを提案する。
シークエンシャルモンテカルロサンプリング器とVIの強度を組み合わせることで、より広い範囲の後方分布を探索し、徐々にターゲット分布に接近する。
実験結果から,本手法はより厳密な変動境界,高い対数類似度,より堅牢な収束率で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-13T08:09:05Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
本稿ではヘテロセダスティック共分散関数のモデリングのための新しいフレームワークを提案する。
後部モデルに近似し, 後部予測モデルを容易にするために, 変分推論を用いる。
提案するフレームワークは,幅広いアプリケーションに対して,堅牢で汎用的なツールを提供する。
論文 参考訳(メタデータ) (2023-08-29T15:06:47Z) - Deep Graph Reprogramming [112.34663053130073]
グラフニューラルネットワーク(GNN)に適したタスク再利用モデル「ディープグラフ再プログラミング」
本稿では,モデル再プログラミングパラダイムと並行して,革新的なデータ再プログラミングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-28T02:04:29Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
本稿では,このような数値データを共同でモデル化するフレキシブルな多項ガウス生成モデルを提案する。
本稿では、潜在変数とモデルのパラメータを推定するための、計算にスケーラブルな変動予測-最大化(EM)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-21T17:54:39Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Collaborative Nonstationary Multivariate Gaussian Process Model [2.362467745272567]
我々は、協調非定常ガウス過程モデル(CNMGP)と呼ばれる新しいモデルを提案する。
CNMGPは、出力が共通の入力セットを共有していないデータを、入力と出力のサイズに依存しない計算複雑性でモデル化することができる。
また,本モデルでは,出力毎に異なる時間変化相関を推定し,予測性能の向上を図っている。
論文 参考訳(メタデータ) (2021-06-01T18:25:22Z) - Cluster-Specific Predictions with Multi-Task Gaussian Processes [4.368185344922342]
マルチタスク学習、クラスタリング、予測を扱うために、ガウス過程(GP)を含むモデルを導入する。
このモデルは、マルチタスクGPと一般的な平均プロセスの混合としてインスタンス化される。
MagmaClustと呼ばれるアルゴリズムは、Rパッケージとして公開されている。
論文 参考訳(メタデータ) (2020-11-16T11:08:59Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。