Certifiably Robust Reinforcement Learning through Model-Based Abstract
Interpretation
- URL: http://arxiv.org/abs/2301.11374v2
- Date: Fri, 26 May 2023 21:40:01 GMT
- Title: Certifiably Robust Reinforcement Learning through Model-Based Abstract
Interpretation
- Authors: Chenxi Yang, Greg Anderson, Swarat Chaudhuri
- Abstract summary: We present a reinforcement learning framework in which the learned policy comes with a machine-checkable certificate of provable adversarial robustness.
We experimentally evaluate CAROL on four MuJoCo environments with continuous state and action spaces.
CAROL learns policies that, when contrasted with policies from the state-of-the-art robust RL algorithms, exhibit: (i) markedly enhanced certified performance lower bounds; and (ii) comparable performance under empirical adversarial attacks.
- Score: 10.69970450827617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a reinforcement learning (RL) framework in which the learned
policy comes with a machine-checkable certificate of provable adversarial
robustness. Our approach, called CAROL, learns a model of the environment. In
each learning iteration, it uses the current version of this model and an
external abstract interpreter to construct a differentiable signal for provable
robustness. This signal is used to guide learning, and the abstract
interpretation used to construct it directly leads to the robustness
certificate returned at convergence. We give a theoretical analysis that bounds
the worst-case accumulative reward of CAROL. We also experimentally evaluate
CAROL on four MuJoCo environments with continuous state and action spaces. On
these tasks, CAROL learns policies that, when contrasted with policies from the
state-of-the-art robust RL algorithms, exhibit: (i) markedly enhanced certified
performance lower bounds; and (ii) comparable performance under empirical
adversarial attacks.
Related papers
- Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning [87.7836502955847]
We propose a novel self-rewarding reinforcement learning framework to enhance Large Language Model (LLM) reasoning.<n>Our key insight is that correct responses often exhibit consistent trajectory patterns in terms of model likelihood.<n>We introduce CoVo, an intrinsic reward mechanism that integrates Consistency and Volatility via a robust vector-space aggregation strategy.
arXiv Detail & Related papers (2025-06-10T12:40:39Z) - Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws [52.10468229008941]
This paper formalizes an emerging learning paradigm that uses a trained model as a reference to guide and enhance the training of a target model through strategic data selection or weighting.<n>We provide theoretical insights into why this approach improves generalization and data efficiency compared to training without a reference model.<n>Building on these insights, we introduce a novel method for Contrastive Language-Image Pretraining with a reference model, termed DRRho-CLIP.
arXiv Detail & Related papers (2025-05-10T16:55:03Z) - SAMBO-RL: Shifts-aware Model-based Offline Reinforcement Learning [9.88109749688605]
Model-based Offline Reinforcement Learning trains policies based on offline datasets and model dynamics.
This paper disentangles the problem into two key components: model bias and policy shift.
We introduce Shifts-aware Model-based Offline Reinforcement Learning (SAMBO-RL)
arXiv Detail & Related papers (2024-08-23T04:25:09Z) - iQRL -- Implicitly Quantized Representations for Sample-efficient Reinforcement Learning [24.684363928059113]
We propose an efficient representation learning method using only a self-supervised latent-state consistency loss.
We achieve high performance and prevent representation collapse by quantizing the latent representation.
Our method, named iQRL: implicitly Quantized Reinforcement Learning, is straightforward, compatible with any model-free RL algorithm.
arXiv Detail & Related papers (2024-06-04T18:15:44Z) - READ: Improving Relation Extraction from an ADversarial Perspective [33.44949503459933]
We propose an adversarial training method specifically designed for relation extraction (RE)
Our approach introduces both sequence- and token-level perturbations to the sample and uses a separate perturbation vocabulary to improve the search for entity and context perturbations.
arXiv Detail & Related papers (2024-04-02T16:42:44Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - CLARE: Conservative Model-Based Reward Learning for Offline Inverse
Reinforcement Learning [26.05184273238923]
This work aims to tackle a major challenge in offline Inverse Reinforcement Learning (IRL)
We devise a principled algorithm (namely CLARE) that solves offline IRL efficiently via integrating "conservatism" into a learned reward function.
Our theoretical analysis provides an upper bound on the return gap between the learned policy and the expert policy.
arXiv Detail & Related papers (2023-02-09T17:16:29Z) - Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning [92.18524491615548]
Contrastive self-supervised learning has been successfully integrated into the practice of (deep) reinforcement learning (RL)
We study how RL can be empowered by contrastive learning in a class of Markov decision processes (MDPs) and Markov games (MGs) with low-rank transitions.
Under the online setting, we propose novel upper confidence bound (UCB)-type algorithms that incorporate such a contrastive loss with online RL algorithms for MDPs or MGs.
arXiv Detail & Related papers (2022-07-29T17:29:08Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - A Free Lunch from the Noise: Provable and Practical Exploration for
Representation Learning [55.048010996144036]
We show that under some noise assumption, we can obtain the linear spectral feature of its corresponding Markov transition operator in closed-form for free.
We propose Spectral Dynamics Embedding (SPEDE), which breaks the trade-off and completes optimistic exploration for representation learning by exploiting the structure of the noise.
arXiv Detail & Related papers (2021-11-22T19:24:57Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
We study the robustness of reinforcement learning with adversarially perturbed state observations.
With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found.
For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones.
arXiv Detail & Related papers (2021-01-21T05:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.