論文の概要: Discriminative Entropy Clustering and its Relation to K-means and SVM
- arxiv url: http://arxiv.org/abs/2301.11405v4
- Date: Sun, 29 Sep 2024 15:31:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:01:05.241065
- Title: Discriminative Entropy Clustering and its Relation to K-means and SVM
- Title(参考訳): 識別エントロピークラスタリングとK平均とSVMとの関係
- Authors: Zhongwen Zhang, Yuri Boykov,
- Abstract要約: モデルの入力と出力の相互情報の最大化は、ソフトマックス予測の「決定性」と「公正性」に関係している。
本稿では,一般的なソフトマックスモデルに対するエントロピークラスタリングの自己ラベル化に関する新しい定式化を提案する。
我々のアルゴリズムは、ディープクラスタリングのためのいくつかの標準ベンチマークにおける技術状況を改善する。
- 参考スコア(独自算出の注目度): 9.394359851234201
- License:
- Abstract: Maximization of mutual information between the model's input and output is formally related to "decisiveness" and "fairness" of the softmax predictions, motivating these unsupervised entropy-based criteria for clustering. First, in the context of linear softmax models, we discuss some general properties of entropy-based clustering. Disproving some earlier claims, we point out fundamental differences with K-means. On the other hand, we prove the margin maximizing property for decisiveness establishing a relation to SVM-based clustering. Second, we propose a new self-labeling formulation of entropy clustering for general softmax models. The pseudo-labels are introduced as auxiliary variables "splitting" the fairness and decisiveness. The derived self-labeling loss includes the reverse cross-entropy robust to pseudo-label errors and allows an efficient EM solver for pseudo-labels. Our algorithm improves the state of the art on several standard benchmarks for deep clustering.
- Abstract(参考訳): モデルの入力と出力の相互情報の最大化は、正式にはソフトマックス予測の「決定性」と「公正性」に関係しており、これらの教師なしエントロピーに基づくクラスタリングの基準を動機付けている。
まず、線形ソフトマックスモデルの文脈において、エントロピーに基づくクラスタリングの一般的な性質について論じる。
以前の主張に反し、K-平均との根本的な違いを指摘する。
一方,SVMクラスタリングとの関連性を確立するために,決定性に対するマージンの最大化特性を実証する。
第二に、一般的なソフトマックスモデルに対するエントロピークラスタリングの自己ラベル化に関する新しい定式化を提案する。
擬似ラベルは「公平さと決定性を分割する」補助変数として導入される。
導出した自己ラベル損失は、擬似ラベル誤りに対して頑健な逆クロスエントロピーを含み、擬似ラベルに対する効率的なEMソルバを可能にする。
我々のアルゴリズムは、ディープクラスタリングのためのいくつかの標準ベンチマークの最先端性を改善する。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
本稿では,嘉心表現の原理に基づくデータ量子化アルゴリズムを提案する。
以上の結果から, カシ量子化はモデル性能の競争力や優れた品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T12:38:46Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous
Data [16.153709556346417]
クラスタリングは広くデプロイされた学習ツールである。
iLA-SDPはEMよりも感度が低く、高次元データでは安定である。
論文 参考訳(メタデータ) (2022-09-29T21:03:13Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions [16.876111500144667]
我々はk-sBetasと呼ばれる新しい確率的クラスタリング手法を提案する。
クラスタリング分布の総括的最大アプリート(MAP)視点を提供する。
我々のコードと既存の単純なクラスタリング手法との比較および導入したソフトマックス予測ベンチマークが公開されている。
論文 参考訳(メタデータ) (2022-07-30T18:29:11Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
本稿では,局所凸型ユーザコストを用いた個人化フェデレーション学習のためのアルゴリズム群を提案する。
提案するフレームワークは,異なるユーザのモデルの違いをペナル化する凸クラスタリングの一般化に基づいている。
論文 参考訳(メタデータ) (2022-02-01T19:25:31Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - Robust M-Estimation Based Bayesian Cluster Enumeration for Real
Elliptically Symmetric Distributions [5.137336092866906]
データセットにおける最適なクラスタ数のロバストな決定は、広範囲のアプリケーションにおいて必須の要素である。
本稿では任意のReally Symmetric(RES)分散混合モデルで使用できるように一般化する。
サンプルサイズが有限であるデータセットに対して,ロバストな基準を導出するとともに,大規模なサンプルサイズでの計算コスト削減のための近似を提供する。
論文 参考訳(メタデータ) (2020-05-04T11:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。