論文の概要: Parkinson gait modelling from an anomaly deep representation
- arxiv url: http://arxiv.org/abs/2301.11418v1
- Date: Thu, 26 Jan 2023 21:09:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 17:06:14.703801
- Title: Parkinson gait modelling from an anomaly deep representation
- Title(参考訳): 異常深部表現によるパーキンソン・ゲイト・モデリング
- Authors: Edgar Rangel, Fabio Martinez
- Abstract要約: パーキンソン病は、姿勢不安定性、硬度、震動などの歩行運動障害と関連している。
いくつかのアプローチでは、運動中の運動パターンを定量化するための学習表現を導入し、診断や治療計画などの臨床手順を支援した。
本研究は,映像再構成と異常検出の枠組みを前提として,自己教師付き生成表現を導入する。
14例のPD患者と23例のコントロール対象が記録され,86.9%のAUC,80%の同義性レベル,70%の形状性レベルが達成された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's Disease is associated with gait movement disorders, such as
postural instability, stiffness, and tremors. Today, some approaches
implemented learning representations to quantify kinematic patterns during
locomotion, supporting clinical procedures such as diagnosis and treatment
planning. These approaches assumes a large amount of stratified and labeled
data to optimize discriminative representations. Nonetheless, these
considerations may restrict the operability of approaches in real scenarios
during clinical practice. This work introduces a self-supervised generative
representation, under the pretext of video reconstruction and anomaly detection
framework. This architecture is trained following a one-class weakly supervised
learning to avoid inter-class variance and approach the multiple relationships
that represent locomotion. For validation 14 PD patients and 23 control
subjects were recorded, and trained with the control population only, achieving
an AUC of 86.9%, homoscedasticity level of 80% and shapeness level of 70% in
the classification task considering its generalization.
- Abstract(参考訳): パーキンソン病は、姿勢不安定性、硬度、震動などの歩行運動障害と関連している。
今日では、運動中の運動パターンを定量化するための学習表現を導入し、診断や治療計画などの臨床手順を支援している。
これらのアプローチは、識別表現を最適化するために、大量の階層化およびラベル付きデータを仮定する。
それにもかかわらず、これらの考慮は、臨床実践中の実際のシナリオにおけるアプローチの操作性を制限する可能性がある。
本研究では,映像再構成と異常検出の枠組みを前提とした自己教師付き生成表現を導入する。
このアーキテクチャは、クラス間の分散を回避し、移動を表す複数の関係にアプローチするために、一流の教師付き学習に従って訓練される。
検証のために14名のpd患者と23名の対照被験者を記録し, 対照群のみで訓練し, auc 86.9%, ホモシedasticity レベル80%, shapeness レベル70%を一般化した。
関連論文リスト
- Deep learning for objective estimation of Parkinsonian tremor severity [0.0]
パーキンソン病の術後の震動を解析するためのピクセルベース深層学習モデルを提案する。
2大陸にまたがる5つの運動障害センターから2,742件の評価を受けた。
症状の左右非対称性を検出し、震度の違いを区別した。
論文 参考訳(メタデータ) (2024-09-03T16:00:34Z) - Adaptive Variance Thresholding: A Novel Approach to Improve Existing
Deep Transfer Vision Models and Advance Automatic Knee-Joint Osteoarthritis
Classification [0.11249583407496219]
Knee-Joint型変形性関節症(KOA)は、世界的な障害の原因であり、診断に本質的に複雑である。
1つの有望な分類経路は、ディープラーニングの手法を適用することである。
本研究は,学習後特殊分類器を改善するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-10T00:17:07Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
本稿では,特徴抽出器がより識別的な特徴表現を抽出するのを助けるために,2段階フレームワークの第1段階にメトリック学習を組み込むことを提案する。
主に3つの医用画像データセットを用いて実験したところ、提案手法は既存の1段階と2段階のアプローチより一貫して優れていた。
論文 参考訳(メタデータ) (2022-07-14T14:57:01Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - A Twin Neural Model for Uplift [59.38563723706796]
Upliftは条件付き治療効果モデリングの特定のケースです。
相対リスクのベイズ解釈との関連性を利用して定義した新たな損失関数を提案する。
本提案手法は,シミュレーション設定の最先端と大規模ランダム化実験による実データとの競合性を示す。
論文 参考訳(メタデータ) (2021-05-11T16:02:39Z) - Artificial Intelligence Methods Based Hierarchical Classification of
Frontotemporal Dementia to Improve Diagnostic Predictability [0.0]
Frontotemporal Dementia(FTD)患者は、認知能力、エグゼクティブおよび行動特性、言語能力の喪失、および記憶能力の低下を損ないました。
本研究の目的は、皮質厚さデータに人工知能(AI)のデータ駆動技術を適用することにより、各被験者のMRI画像をFTDのスペクトルの1つに階層的に分類することである。
自動分類モデルでは, 支持ベクトルマシン (SVM) , 線形判別分析 (LDA) , ナイブベイズ法 (Naive Bayes) が10倍のクロスバリデーション解析でそれぞれ86.5, 76, 72.7の分類精度を得た。
論文 参考訳(メタデータ) (2021-04-12T07:04:11Z) - Exploring Motion Boundaries in an End-to-End Network for Vision-based
Parkinson's Severity Assessment [2.359557447960552]
パーキンソン病の重症度を2つの重要な構成要素である手の動きと歩行で測定するためのエンドツーエンドのディープラーニングフレームワークを提示する。
本手法は,テンポラルセグメンテーションフレームワークで訓練された膨らんだ3次元cnnを用いて,映像データの時間構造と時間構造を学習する。
本研究では,25名のPD患者を対象に,手作業および歩行作業における72.3%,77.1%の上位1位精度のデータセットを用いて,提案手法を評価した。
論文 参考訳(メタデータ) (2020-12-17T19:20:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Deep Representation Learning of Electronic Health Records to Unlock
Patient Stratification at Scale [0.5498849973527224]
ヘテロジニアスEHRを処理するためのディープラーニングに基づく教師なしフレームワークを提案する。
患者層形成を効果的かつ効果的に行うことができる患者表現を導出する。
論文 参考訳(メタデータ) (2020-03-14T00:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。