Parkinson gait modelling from an anomaly deep representation
- URL: http://arxiv.org/abs/2301.11418v2
- Date: Tue, 29 Aug 2023 22:36:22 GMT
- Title: Parkinson gait modelling from an anomaly deep representation
- Authors: Edgar Rangel, Fabio Martinez
- Abstract summary: Parkinson's Disease (PD) is associated with gait movement disorders, such as bradykinesia, stiffness, tremors and postural instability.
This work introduces a self-supervised generative representation to learn gait-motion-related patterns.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinson's Disease (PD) is associated with gait movement disorders, such as
bradykinesia, stiffness, tremors and postural instability, caused by
progressive dopamine deficiency. Today, some approaches have implemented
learning representations to quantify kinematic patterns during locomotion,
supporting clinical procedures such as diagnosis and treatment planning. These
approaches assumes a large amount of stratified and labeled data to optimize
discriminative representations. Nonetheless these considerations may restrict
the approaches to be operable in real scenarios during clinical practice. This
work introduces a self-supervised generative representation to learn
gait-motion-related patterns, under the pretext of video reconstruction and an
anomaly detection framework. This architecture is trained following a one-class
weakly supervised learning to avoid inter-class variance and approach the
multiple relationships that represent locomotion. The proposed approach was
validated with 14 PD patients and 23 control subjects, and trained with the
control population only, achieving an AUC of 95%, homocedasticity level of 70%
and shapeness level of 70% in the classification task considering its
generalization.
Related papers
- AGIR: Assessing 3D Gait Impairment with Reasoning based on LLMs [0.0]
gait impairment plays an important role in early diagnosis, disease monitoring, and treatment evaluation for neurodegenerative diseases.
Recent deep learning-based approaches have consistently improved classification accuracies, but they often lack interpretability.
We introduce AGIR, a novel pipeline consisting of a pre-trained VQ-VAE motion tokenizer and a Large Language Model (LLM) fine-tuned over pairs of motion tokens.
arXiv Detail & Related papers (2025-03-23T17:12:16Z) - A digital eye-fixation biomarker using a deep anomaly scheme to classify Parkisonian patterns [0.6249768559720122]
Oculomotor alterations constitute a promising biomarker to detect and characterize Parkinson's disease (PD)
Recent advances on machine learning and video analysis have encouraged novel characterizations of eye movement patterns.
This work introduces a novel video analysis scheme to quantify Parkinsonian eye fixation patterns with an anomaly detection framework.
arXiv Detail & Related papers (2025-02-25T01:34:08Z) - Two-Stage Representation Learning for Analyzing Movement Behavior Dynamics in People Living with Dementia [44.39545678576284]
This study analyzes home activity data from individuals living with dementia by proposing a two-stage, self-supervised learning approach.
The first stage converts time-series activities into text sequences encoded by a pre-trained language model.
This PageRank vector captures latent state transitions, effectively compressing complex behaviour data into a succinct form.
arXiv Detail & Related papers (2025-02-13T10:57:25Z) - Deep learning for objective estimation of Parkinsonian tremor severity [0.0]
We introduce a pixel-based deep learning model designed to analyse postural tremor in Parkinson's disease.
It was trained on 2,742 assessments from five specialised movement disorder centres across two continents.
It detected lateral asymmetry of symptoms, and differentiated between different tremor severities.
arXiv Detail & Related papers (2024-09-03T16:00:34Z) - Adaptive Variance Thresholding: A Novel Approach to Improve Existing
Deep Transfer Vision Models and Advance Automatic Knee-Joint Osteoarthritis
Classification [0.11249583407496219]
Knee-Joint Osteoarthritis (KOA) is a prevalent cause of global disability and inherently complex to diagnose.
One promising classification avenue involves applying deep learning methods.
This study proposes a novel paradigm for improving post-training specialized classifiers.
arXiv Detail & Related papers (2023-11-10T00:17:07Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - A Twin Neural Model for Uplift [59.38563723706796]
Uplift is a particular case of conditional treatment effect modeling.
We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk.
We show our proposed method is competitive with the state-of-the-art in simulation setting and on real data from large scale randomized experiments.
arXiv Detail & Related papers (2021-05-11T16:02:39Z) - Artificial Intelligence Methods Based Hierarchical Classification of
Frontotemporal Dementia to Improve Diagnostic Predictability [0.0]
Patients with Frontotemporal Dementia (FTD) have impaired cognitive abilities, executive and behavioral traits, loss of language ability, and decreased memory capabilities.
The purpose of this study is to classify MRI images of every single subject into one of the spectrums of the FTD in a hierarchical order by applying data-driven techniques of Artificial Intelligence (AI) on cortical thickness data.
Our proposed automated classification model yielded classification accuracy of 86.5, 76, and 72.7 with support vector machine (SVM), linear discriminant analysis (LDA), and Naive Bayes methods, respectively, in 10-fold cross-validation analysis.
arXiv Detail & Related papers (2021-04-12T07:04:11Z) - Exploring Motion Boundaries in an End-to-End Network for Vision-based
Parkinson's Severity Assessment [2.359557447960552]
We present an end-to-end deep learning framework to measure Parkinson's disease severity in two important components, hand movement and gait.
Our method leverages on an Inflated 3D CNN trained by a temporal segment framework to learn spatial and long temporal structure in video data.
We evaluate our proposed method on a dataset of 25 PD patients, obtaining 72.3% and 77.1% top-1 accuracy on hand movement and gait tasks respectively.
arXiv Detail & Related papers (2020-12-17T19:20:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Deep Representation Learning of Electronic Health Records to Unlock
Patient Stratification at Scale [0.5498849973527224]
We present an unsupervised framework based on deep learning to process heterogeneous EHRs.
We derive patient representations that can efficiently and effectively enable patient stratification at scale.
arXiv Detail & Related papers (2020-03-14T00:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.