A digital eye-fixation biomarker using a deep anomaly scheme to classify Parkisonian patterns
- URL: http://arxiv.org/abs/2502.17762v1
- Date: Tue, 25 Feb 2025 01:34:08 GMT
- Title: A digital eye-fixation biomarker using a deep anomaly scheme to classify Parkisonian patterns
- Authors: Juan Niño, Luis Guayacán, Santiago Gómez, Fabio Martínez,
- Abstract summary: Oculomotor alterations constitute a promising biomarker to detect and characterize Parkinson's disease (PD)<n>Recent advances on machine learning and video analysis have encouraged novel characterizations of eye movement patterns.<n>This work introduces a novel video analysis scheme to quantify Parkinsonian eye fixation patterns with an anomaly detection framework.
- Score: 0.6249768559720122
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Oculomotor alterations constitute a promising biomarker to detect and characterize Parkinson's disease (PD), even in prodromal stages. Currently, only global and simplified eye movement trajectories are employed to approximate the complex and hidden kinematic relationships of the oculomotor function. Recent advances on machine learning and video analysis have encouraged novel characterizations of eye movement patterns to quantify PD. These schemes enable the identification of spatiotemporal segments primarily associated with PD. However, they rely on discriminative models that require large training datasets and depend on balanced class distributions. This work introduces a novel video analysis scheme to quantify Parkinsonian eye fixation patterns with an anomaly detection framework. Contrary to classical deep discriminative schemes that learn differences among labeled classes, the proposed approach is focused on one-class learning, avoiding the necessity of a significant amount of data. The proposed approach focuses only on Parkinson's representation, considering any other class sample as an anomaly of the distribution. This approach was evaluated for an ocular fixation task, in a total of 13 control subjects and 13 patients on different stages of the disease. The proposed digital biomarker achieved an average sensitivity and specificity of 0.97 and 0.63, respectively, yielding an AUC-ROC of 0.95. A statistical test shows significant differences (p < 0.05) among predicted classes, evidencing a discrimination between patients and control subjects.
Related papers
- Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging [11.60042534415617]
We propose to model the subject weights as a linear combination of the eigenbases of a spectral population graph.
In doing so, the learned weights smoothly vary across the graph, highlighting sub-cohorts with high and low predictability.
Compared to existing sample weighting schemes, our sample weights improve interpretability and highlight sub-cohorts with distinct characteristics.
arXiv Detail & Related papers (2024-10-01T16:48:15Z) - Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
Alzheimer's Disease (AD) detection has emerged as a promising research area that employs machine learning classification models.
We identify within-class variation as a critical challenge in AD detection: individuals with AD exhibit a spectrum of cognitive impairments.
We propose two novel methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe), targeting two problems respectively.
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Predicting Parkinson's disease evolution using deep learning [1.4610685586329806]
Parkinson's disease is a neurological condition that occurs in nearly 1% of the world's population.
There is not a single blood test or biomarker available to diagnose Parkinson's disease.
No AI tools have been designed to identify the stage of progression.
arXiv Detail & Related papers (2023-12-28T10:30:54Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Parkinson gait modelling from an anomaly deep representation [0.0]
Parkinson's Disease (PD) is associated with gait movement disorders, such as bradykinesia, stiffness, tremors and postural instability.
This work introduces a self-supervised generative representation to learn gait-motion-related patterns.
arXiv Detail & Related papers (2023-01-26T21:09:45Z) - XDEEP-MSI: Explainable Bias-Rejecting Microsatellite Instability Deep
Learning System In Colorectal Cancer [0.0]
We present a system for the prediction of microsatellite instability (MSI) from H&E images of colorectal cancer using deep learning (DL) techniques customized for tissue microarrays (TMAs)
The system incorporates an end-to-end image preprocessing module that produces tiles at multiple magnifications in the regions of interest as guided by a tissue module, and a multiple-bias rejecting module.
arXiv Detail & Related papers (2021-10-28T17:58:01Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data [0.0]
This study applies machine learning methods to discriminate six stages of Parkinson's Disease (PD) progression.
The data was acquired by low cost walker-mounted sensors in an experiment at a movement disorders clinic.
arXiv Detail & Related papers (2020-06-22T09:34:12Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.