A critical look at deep neural network for dynamic system modeling
- URL: http://arxiv.org/abs/2301.11604v2
- Date: Fri, 20 Oct 2023 11:48:18 GMT
- Title: A critical look at deep neural network for dynamic system modeling
- Authors: Jinming Zhou and Yucai Zhu
- Abstract summary: This paper questions the capability of (deep) neural networks for the modeling of dynamic systems using input-output data.
For the identification of linear time-invariant (LTI) dynamic systems, two representative neural network models are compared.
For the LTI system, both LSTM and CFNN fail to deliver consistent models even in noise-free cases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network models become increasingly popular as dynamic modeling tools
in the control community. They have many appealing features including nonlinear
structures, being able to approximate any functions. While most researchers
hold optimistic attitudes towards such models, this paper questions the
capability of (deep) neural networks for the modeling of dynamic systems using
input-output data. For the identification of linear time-invariant (LTI)
dynamic systems, two representative neural network models, Long Short-Term
Memory (LSTM) and Cascade Foward Neural Network (CFNN) are compared to the
standard Prediction Error Method (PEM) of system identification. In the
comparison, four essential aspects of system identification are considered,
then several possible defects and neglected issues of neural network based
modeling are pointed out. Detailed simulation studies are performed to verify
these defects: for the LTI system, both LSTM and CFNN fail to deliver
consistent models even in noise-free cases; and they give worse results than
PEM in noisy cases.
Related papers
- Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
We discuss a systematic approach to constructing neural architectures for modeling a subclass of dynamical systems.
We use a variant of continuous-time neural networks in which the output of each neuron evolves continuously as a solution of a first-order or second-order Ordinary Differential Equation (ODE)
Instead of deriving the network architecture and parameters from data, we propose a gradient-free algorithm to compute sparse architecture and network parameters directly from the given LTI system.
arXiv Detail & Related papers (2024-03-24T16:16:41Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
arXiv Detail & Related papers (2023-05-20T12:41:47Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation [0.0]
convolutional neural networks (CNNs) have brought breakthroughs in processing clinical electrocardiograms (ECGs) and speaker-independent speech.
In this paper, we propose local pattern aggregation-based deep-learning models to effectively deal with both problems.
The novel network structure, called LPANet, has cropping and aggregation operations embedded into it.
arXiv Detail & Related papers (2022-05-28T13:18:18Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
This work demonstrates that injection of partially known information at an intermediate layer in a deep neural network can improve model accuracy, reduce model uncertainty, and yield improved convergence during the training.
The value of these physics-guided neural networks has been demonstrated by learning the dynamics of a wide variety of nonlinear dynamical systems represented by five well-known equations in nonlinear systems theory.
arXiv Detail & Related papers (2022-05-13T19:06:36Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.