論文の概要: Image Restoration with Mean-Reverting Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2301.11699v1
- Date: Fri, 27 Jan 2023 13:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 15:36:37.081467
- Title: Image Restoration with Mean-Reverting Stochastic Differential Equations
- Title(参考訳): 確率微分方程式を用いた画像復元
- Authors: Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sj\"olund and
Thomas B. Sch\"on
- Abstract要約: 本稿では,汎用画像復元のための微分方程式(SDE)を提案する。
対応する逆時間SDEをシミュレートすることにより、低画質画像の起源を復元することができる。
提案手法は,画像のデレーニング,デブロアリング,デノイングの定量的比較において,高い競争性能を達成できることを示す。
- 参考スコア(独自算出の注目度): 9.245782611878752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a stochastic differential equation (SDE) approach for
general-purpose image restoration. The key construction consists in a
mean-reverting SDE that transforms a high-quality image into a degraded
counterpart as a mean state with fixed Gaussian noise. Then, by simulating the
corresponding reverse-time SDE, we are able to restore the origin of the
low-quality image without relying on any task-specific prior knowledge.
Crucially, the proposed mean-reverting SDE has a closed-form solution, allowing
us to compute the ground truth time-dependent score and learn it with a neural
network. Moreover, we propose a maximum likelihood objective to learn an
optimal reverse trajectory which stabilizes the training and improves the
restoration results. In the experiments, we show that our proposed method
achieves highly competitive performance in quantitative comparisons on image
deraining, deblurring, and denoising, setting a new state-of-the-art on two
deraining datasets. Finally, the general applicability of our approach is
further demonstrated via qualitative results on image super-resolution,
inpainting, and dehazing. Code is available at
\url{https://github.com/Algolzw/image-restoration-sde}.
- Abstract(参考訳): 本稿では,汎用画像復元のための確率微分方程式(SDE)を提案する。
鍵となる構成は、高品質な画像をガウス雑音が固定された平均状態として劣化した状態に変換する平均回帰SDEである。
そして、対応する逆時間SDEをシミュレートすることにより、タスク固有の事前知識に頼ることなく、低品質画像の原点を復元することができる。
重要なことは、提案した平均回帰SDEは閉形式解を持ち、真理時間依存スコアを計算してニューラルネットワークで学習することができる。
さらに, 学習を安定させ, 復元結果を改善するための最適逆行路を学習するための最大帰結目標を提案する。
実験では,提案手法が画像デレーシング,デブローリング,デノージングの定量的比較において高い競合性能を達成し,2つのデレーシングデータセットに新たな最先端を設定することを実証した。
最後に, 画像の超解像, 塗装, 脱湿に関する定性的な結果により, 提案手法の一般適用性をさらに実証した。
コードは \url{https://github.com/algolzw/image-restoration-sde} で入手できる。
関連論文リスト
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
我々は, この手法の軌道最適化を再構築し, 復元品質と効率の両立に焦点をあてる。
本稿では,複雑な経路を適応可能なサイズで複数の管理可能なステップに合理化するためのコスト対応トラジェクトリー蒸留法を提案する。
実験では提案手法の有意な優位性を示し, 最先端手法よりも最大2.1dBのPSNR改善を実現した。
論文 参考訳(メタデータ) (2024-10-07T07:46:08Z) - Solving General Noisy Inverse Problem via Posterior Sampling: A Policy Gradient Viewpoint [21.22750301965104]
本研究では,事前学習した拡散生成モデルを用いて,タスク固有モデルによる微調整を伴わずに,幅広い画像逆タスクを解く。
入力画像の誘導スコア関数を正確に推定するために,拡散ポリシー勾配(DPG)を提案する。
実験により,複数の線形および非線形の逆問題に対するガウス雑音とポアソン雑音の両方に対して,本手法は頑健であることが示された。
論文 参考訳(メタデータ) (2024-03-15T16:38:47Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) は、高品質な参照画像を必要としない、人間の知覚に合わせて画像品質を測定する手法を開発することを目的としている。
本研究では、画像歪み多様体をモデル化し、本質的な表現を得るための自己教師型アプローチ ARNIQA を提案する。
論文 参考訳(メタデータ) (2023-10-20T17:22:25Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - SDEdit: Image Synthesis and Editing with Stochastic Differential
Equations [113.35735935347465]
微分方程式を用いた最近の生成モデルに基づく微分編集(SDEdit)を導入する。
ユーザが編集した入力画像が与えられたら、まずSDEに従って入力にノイズを付加し、その後、逆SDEをシミュレートして、その確率を前より徐々に増加させます。
GANインバージョンに基づく最近の画像編集手法において重要な要素であるタスク固有損失関数の設計は不要である。
論文 参考訳(メタデータ) (2021-08-02T17:59:47Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
複素データ分布を雑音を注入することによって既知の事前分布に変換する微分方程式を提案する。
対応する逆時間SDEは、ノイズを緩やかに除去し、先行分布をデータ分布に戻す。
スコアベース生成モデリングの進歩を活用することで、これらのスコアをニューラルネットワークで正確に推定することができる。
スコアベース生成モデルから1024×1024画像の高忠実度生成を初めて示す。
論文 参考訳(メタデータ) (2020-11-26T19:39:10Z) - Image Inpainting with Learnable Feature Imputation [8.293345261434943]
正規畳み込み層は、未知の領域にフィルターを適用するのと同じ方法で、塗装された画像の視覚的アーティファクトを引き起こす。
本稿では,欠落した入力値の畳み込みに対する(階層的な)特徴計算を提案する。
我々はCelebA-HQとPlaces2を比較し,そのモデルを検証する。
論文 参考訳(メタデータ) (2020-11-02T16:05:32Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。