論文の概要: Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean
- arxiv url: http://arxiv.org/abs/2301.11862v1
- Date: Fri, 27 Jan 2023 17:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 14:40:44.867615
- Title: Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean
- Title(参考訳): 位置スケールと形状のためのニューラル付加モデル:平均を超えた解釈可能なニューラル回帰のためのフレームワーク
- Authors: Anton Thielmann, Ren\'e-Marcel Kruse, Thomas Kneib, Benjamin S\"afken
- Abstract要約: ディープニューラルネットワーク(DNN)は、様々なタスクにおいて非常に効果的であることが証明されており、高いレベルの予測力を必要とする問題に対するゴーツーメソッドとなっている。
この成功にもかかわらず、DNNの内部構造はしばしば透明ではなく、解釈や理解が難しい。
この解釈可能性の欠如は、近年、本質的に解釈可能なニューラルネットワークの研究の増加につながっている。
本研究では,従来のディープラーニングモデルの予測能力と分布回帰の固有の利点を組み合わせたモデルフレームワークであるNAMLSSを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have proven to be highly effective in a variety
of tasks, making them the go-to method for problems requiring high-level
predictive power. Despite this success, the inner workings of DNNs are often
not transparent, making them difficult to interpret or understand. This lack of
interpretability has led to increased research on inherently interpretable
neural networks in recent years. Models such as Neural Additive Models (NAMs)
achieve visual interpretability through the combination of classical
statistical methods with DNNs. However, these approaches only concentrate on
mean response predictions, leaving out other properties of the response
distribution of the underlying data. We propose Neural Additive Models for
Location Scale and Shape (NAMLSS), a modelling framework that combines the
predictive power of classical deep learning models with the inherent advantages
of distributional regression while maintaining the interpretability of additive
models.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は様々なタスクにおいて非常に効果的であることが証明されており、高いレベルの予測力を必要とする問題に対するゴーツーメソッドとなっている。
この成功にもかかわらず、dnnの内部動作はしばしば透明ではなく、解釈や理解が困難である。
この解釈可能性の欠如により、近年は本質的に解釈可能なニューラルネットワークの研究が増加している。
ニューラル加算モデル(NAM)のようなモデルは、古典的な統計手法とDNNを組み合わせることで視覚的解釈性を実現する。
しかし、これらのアプローチは平均応答予測のみに集中し、基礎となるデータの応答分布の他の特性を除外する。
我々は,従来のディープラーニングモデルの予測能力と,適応モデルの解釈可能性を維持しつつ,分布回帰の固有の利点を組み合わせたモデルフレームワークであるNeural Additive Models for Location Scale and Shape (NAMLSS)を提案する。
関連論文リスト
- Inferring stochastic low-rank recurrent neural networks from neural data [5.179844449042386]
計算神経科学における中心的な目的は、大きなニューロンの活動と基礎となる力学系を関連付けることである。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことによって、そのような解釈可能性を示す。
そこで本研究では,低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T15:57:49Z) - Structural Neural Additive Models: Enhanced Interpretable Machine
Learning [0.0]
近年、この分野は、視覚的に解釈可能なニューラル・アダプティブ・モデル(NAM)のような、解釈可能なニューラルネットワークに向かって進んでいる。
特徴効果の可視化を超越したインテリジェンス指向のさらなるステップを提案し, 構造的ニューラル付加モデル(SNAM)を提案する。
古典的かつ明確に解釈可能な統計手法とニューラルネットワークの予測能力を組み合わせたモデリングフレームワーク。
論文 参考訳(メタデータ) (2023-02-18T09:52:30Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Auditory Attention Decoding from EEG using Convolutional Recurrent
Neural Network [20.37214453938965]
聴覚注意復号(aad)アプローチは,マルチトーカーシナリオにおいて参加者のアイデンティティを判定するために提案されている。
近年,この問題を解決するためにディープニューラルネットワーク(DNN)に基づくモデルが提案されている。
本論文では,新しい畳み込み型リカレントニューラルネットワーク(CRNN)に基づく回帰モデルと分類モデルを提案する。
論文 参考訳(メタデータ) (2021-03-03T05:09:40Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
因果モデリングは機械学習(ML)における多くの課題に対する潜在的な解決策として認識されている。
深層ニューラルネットワーク(DNN)モデルによって学習された特徴表現を分解するために、最近提案された対実的アプローチが依然として使われている方法について説明する。
論文 参考訳(メタデータ) (2020-04-20T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。