Vertex-based reachability analysis for verifying ReLU deep neural
networks
- URL: http://arxiv.org/abs/2301.12001v1
- Date: Fri, 27 Jan 2023 21:46:03 GMT
- Title: Vertex-based reachability analysis for verifying ReLU deep neural
networks
- Authors: Jo\~ao Zago, Eduardo Camponogara and Eric Antonelo
- Abstract summary: We propose three novel reachability algorithms for verifying deep neural networks with ReLU activations.
Our experiments on the ACAS Xu problem show that the Exact Polytope Network Mapping (EPNM) reachability algorithm proposed in this work surpass the state-of-the-art results from the literature.
- Score: 3.5816079147181483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks achieved high performance over different tasks, i.e. image
identification, voice recognition and other applications. Despite their
success, these models are still vulnerable regarding small perturbations, which
can be used to craft the so-called adversarial examples. Different approaches
have been proposed to circumvent their vulnerability, including formal
verification systems, which employ a variety of techniques, including
reachability, optimization and search procedures, to verify that the model
satisfies some property. In this paper we propose three novel reachability
algorithms for verifying deep neural networks with ReLU activations. The first
and third algorithms compute an over-approximation for the reachable set,
whereas the second one computes the exact reachable set. Differently from
previously proposed approaches, our algorithms take as input a V-polytope. Our
experiments on the ACAS Xu problem show that the Exact Polytope Network Mapping
(EPNM) reachability algorithm proposed in this work surpass the
state-of-the-art results from the literature, specially in relation to other
reachability methods.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Evidential Turing Processes [11.021440340896786]
We introduce an original combination of evidential deep learning, neural processes, and neural Turing machines.
We observe our method on three image classification benchmarks and two neural net architectures.
arXiv Detail & Related papers (2021-06-02T15:09:20Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
presentation attack detection (PAD) has received significant attention from research communities.
We address the problem via fusing both wide and deep features in a unified neural architecture.
The procedure is done on different spoofing datasets such as ROSE-Youtu, SiW and NUAA Imposter.
arXiv Detail & Related papers (2021-01-12T21:20:09Z) - Evolving Deep Convolutional Neural Networks for Hyperspectral Image
Denoising [6.869192200282213]
We propose a novel algorithm to automatically build an optimal Convolutional Neural Network (CNN) to effectively denoise HSIs.
The experiments of the proposed algorithm have been well-designed and compared against the state-of-the-art peer competitors.
arXiv Detail & Related papers (2020-08-15T03:04:11Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
We present a network architecture derived from the loss to maximize conditional log-likelihood.
By extending the layer of latent variables to multiple layers, the network is able to learn robust features on scale.
In experiments, the proposed algorithm significantly outperforms state-of-the-art methods in terms of both recall and precision.
arXiv Detail & Related papers (2020-05-26T01:06:47Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Reachability Analysis for Feed-Forward Neural Networks using Face
Lattices [10.838397735788245]
We propose a parallelizable technique to compute exact reachable sets of a neural network to an input set.
Our approach is capable of constructing the complete input set given an output set, so that any input that leads to safety violation can be tracked.
arXiv Detail & Related papers (2020-03-02T22:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.