A Compact Deep Learning Model for Face Spoofing Detection
- URL: http://arxiv.org/abs/2101.04756v1
- Date: Tue, 12 Jan 2021 21:20:09 GMT
- Title: A Compact Deep Learning Model for Face Spoofing Detection
- Authors: Seyedkooshan Hashemifard and Mohammad Akbari
- Abstract summary: presentation attack detection (PAD) has received significant attention from research communities.
We address the problem via fusing both wide and deep features in a unified neural architecture.
The procedure is done on different spoofing datasets such as ROSE-Youtu, SiW and NUAA Imposter.
- Score: 4.250231861415827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, face biometric security systems are rapidly increasing,
therefore, the presentation attack detection (PAD) has received significant
attention from research communities and has become a major field of research.
Researchers have tackled the problem with various methods, from exploiting
conventional texture feature extraction such as LBP, BSIF, and LPQ to using
deep neural networks with different architectures. Despite the results each of
these techniques has achieved for a certain attack scenario or dataset, most of
them still failed to generalized the problem for unseen conditions, as the
efficiency of each is limited to certain type of presentation attacks and
instruments (PAI). In this paper, instead of completely extracting hand-crafted
texture features or relying only on deep neural networks, we address the
problem via fusing both wide and deep features in a unified neural
architecture. The main idea is to take advantage of the strength of both
methods to derive well-generalized solution for the problem. We also evaluated
the effectiveness of our method by comparing the results with each of the
mentioned techniques separately. The procedure is done on different spoofing
datasets such as ROSE-Youtu, SiW and NUAA Imposter datasets.
In particular, we simultanously learn a low dimensional latent space
empowered with data-driven features learnt via Convolutional Neural Network
designes for spoofing detection task (i.e., deep channel) as well as leverages
spoofing detection feature already popular for spoofing in frequency and
temporal dimensions ( i.e., via wide channel).
Related papers
- Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques [1.2328446298523066]
Hyperspectral imaging provides precise classification for land use and cover due to its exceptional spectral resolution.
However, the challenges of high dimensionality and limited spatial resolution hinder its effectiveness.
This study addresses these challenges by employing deep learning techniques to efficiently process, extract features, and classify data in an integrated manner.
arXiv Detail & Related papers (2024-03-03T15:47:43Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
Facial forgery by deepfakes has caused major security risks and raised severe societal concerns.
We formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it.
Our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection.
arXiv Detail & Related papers (2023-10-10T21:30:05Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Solving Inverse Problems With Deep Neural Networks -- Robustness
Included? [3.867363075280544]
Recent works have pointed out instabilities of deep neural networks for several image reconstruction tasks.
In analogy to adversarial attacks in classification, it was shown that slight distortions in the input domain may cause severe artifacts.
This article sheds new light on this concern, by conducting an extensive study of the robustness of deep-learning-based algorithms for solving underdetermined inverse problems.
arXiv Detail & Related papers (2020-11-09T09:33:07Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
We have proposed a deep learning-based network termed as textitMixNet to detect presentation attacks.
The proposed algorithm utilizes state-of-the-art convolutional neural network architectures and learns the feature mapping for each attack category.
arXiv Detail & Related papers (2020-10-25T23:01:13Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
We provide an experimental-based review of neural-based methods applied to intrusion detection issues.
We offer a complete view of the most prominent neural-based techniques relevant to intrusion detection, including deep-based approaches or weightless neural networks.
Our evaluation quantifies the value of neural networks, particularly when state-of-the-art datasets are used to train the models.
arXiv Detail & Related papers (2020-09-18T18:32:24Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.